

Figure 6. Two views of the trimethylsilyl hexamer depicting the bonding between the bridging silyl group and the lithium atoms.

The marked similarity between this structure and that of cyclohexyllithium hexamer ${ }^{6}$ suggests that the metal-hydrogen interactions have little effect on the stereochemistry of these two derivatives, even though $\mathrm{Li}-\mathrm{H}$ interactions may be present in the cyclohexyl derivative.

The average $\mathrm{Li}-\mathrm{C}$ distance in a series of organolithium compounds is $2.27 \AA$ (Table SIII ${ }^{24}$) and the corresponding average of all $\mathrm{Li}-\mathrm{Si}$ distances in trimethylsilyllithium is 2.68 \AA. Subtracting the covalent radius of carbon from the average Li-C distance gives an effective radius for lithium of $1.50 \AA$, whereas from the trimethylsilyl derivative we obtain $1.51 \AA$, Considering the crudeness of the approximation this suggests that the "effective bonding radius" for lithium in multicentered bonds is $1.5 \AA$, a value somewhat greater than the radius of lithium observed in $\mathrm{Li}_{2}(1.34 \AA)$; this result is in keeping with the weaker nature of the multicentered interaction.

It appears likely that other silyllithium compounds will have structures similar to that of trimethylsilyllithium in the solid state and in solution and that in the germanium analogues complex structures of a similar nature with $\mathrm{Li}-\mathrm{Ge}$ distances on the order of $2.7 \AA$ will obtain.

Further work is necessary in the area of the structures of electron-deficient organolithium, silyllithium, and germyllithium compounds to determine the validity of the suggestions proposed, but they do provide a basis from which future studies may be started.

Acknowledgment. This work was supported in part by NSF Grant CHE75-17217; W.H.I. was a Lubrizol Foundation Fellow (1977-1978).

Supplementary Material Available: Listings of observed and calculated structure amplitudes ($\times 10$). the calculated atomic coordinates for the hydrogen atoms, a comparison of the $\mathrm{Li}-\mathrm{Li}, \mathrm{Li}-\mathrm{C}$, and $\mathrm{Li}-\mathrm{S}$ bond distances and of selected Li-C-Li bond angles (Table SIII), and a projection of the trimethylsilyl group on the triangular face of the lithium atoms (17 pages). Ordering information is given on any current masthead page.

References and Notes

(1) T. L. Brown, Adv. Organomet. Chem., 3, 365 (1965).
(2) J. P. Oliver, Adv. Organomet. Chem., 15, 235 (1977).
(3) E. Weiss, J. Organomet. Chem., 4, 101 (1965).
(4) E. Weiss and G. Hencken, J. Organomet. Chem., 21, 265 (1970).
(5) H. Dietrich, Acta Crystallogr., 16, 681 (1963).
(6) R. Zerger, W. Rhine, and G. Stucky, J. Am. Chem. Soc., 96, 6048 (1974).
(7) R. P. Zerger and G. D. Stucky, J. Chem. Soc., Chem. Commun., 44 (1973).
(8) W. H. Ilsley, M. J. Albright, T. J. Anderson, M. D. Glick, and J. P. Oliver, submitted for publication.
(9) R. E. Rundle, J. Am. Chem. Soc., 69, 1327 (1947).
(10) I. Craubner, Z. Phys. Chem. (Frankfurt am Main), 51, 225 (1966).
(11) W. E. Rhine, G. Stucky, and S. W. Peterson, J. Am. Chem. Soc., 97, 6401 (1975).
(12) J. B. Smart, R. Hogan, P. A. Scherr, L. Ferrier, and J. P. Oliver, J. Am. Chem. Soc., 94, 8371 (1972).
(13) M. A. Ring and D. M. Ritter, J. Phys. Chem., 65, 182 (1961).
(14) D. F. Gaines and T. V. Iorns, J. Am. Chem. Soc., 89. 4249 (1967).
(15) A. Tabereaux and R. N. Grimes, Inorg. Chem., 12, 792 (1973).
(16) T. F. Schaaf, W. Butler, M. D. Glick, and J. P. Oliver, J. Am. Chem. Soc., 96, 7593 (1974)
(17) T. F. Schaaf and J. P. Oliver, J. Am. Chem. Soc., 91,4327 (1969).
(18) W. H. Ilsley, E. A. Sadurski, T. F. Schaaf, M. J. Albright, T. J. Anderson, M. D. Glick, and J. P. Oliver, J. Organomet. Chem., in press.
(19) D. Sayre, Acta Crystallogr., 5, 60 (1952).
(20) W. Schmonsees, Ph.D. Dissertation, Wayne State University, 1974.
(21) REL, "A Program for Phase Determination by Reiterative Application of Sayre's Equations", R. E. Long, Ph.D. Thesis, University of California, Los Angeles, Calif., 1965, Part III.
(22) Local versions of the following programs were used: (1) SYNCOR, W. Schmonsee's program for data reduction; (2) FORDAP, A. Zalkin's Fourier program; (3) ORFLS and ORFFE, W. Busing, K. Martin, and H. Levy's full-matrix least-squares program and function error programs; (4) ORTEP, C. K. Johnson's program for drawing crystal models. Scattering factors were taken from "International Tables for X-ray Crystallography", Vol. IV, J. A. lbers and W. C. Hamilton, Eds., Kynoch Press, Birmingham, England, 1974.
(23) Ideal positions for the hydrogens were calculated with the HFINDR program (Zalkin, 1974) as modified by T. J. Anderson and were in reasonable agreement with positions observed on a three-dimensional Fourier difference synthesis.
(24) See paragraph at end of paper regarding supplementary material.
(25) T. L. Brown, D. W. Dickerhoof, and D. A. Bafus, J. Am. Chem. Soc., 84, 1371 (1962)
(26) W. M. Scovell, B. Y. Kimura, and T. G. Spiro, J. Coord. Chem., 1, 107 (1971).
(27) K. S. Chen, F. Bertini, and J. K. Kochi, J. Am. Chem. Soc., 95, 1340 (1973).
(28) J. Hooz, S. Akiyama, F. J. Cedar, M. Bennett, and R. M. Tuggle, J. Am. Chem. Soc., 96, 274 (1974).
(29) E. Zintl and A. Harder, Z. Phys. Chem., Abt. B, 28, 478 (1935).

Allylation of Quinones with Allyltin Reagents ${ }^{1}$

Yoshinori Naruta
Contribution from the Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan. Received September 12, 1979

Abstract

Lewis acid $\left(\mathrm{BF}_{3}\right)$ catalyzed allylation of quinones with allyl- (2a), 2-methyl-2-propenyl- (2b), trans-2-butenyl($\mathbf{2 c}, \mathbf{d}$), 3-methyl-2-butenyl- ($\mathbf{2 e}, \mathbf{f}$), and trans-cinnamyltrialkyltin ($\mathbf{2 g}$) gives the corresponding allylhydroquinones with high regioselectivity. Vitamin $K_{2(5)}(7)$ and coenzyme $Q_{1}(9)$ were prepared in yields of 78 and 75%, respectively. These reactions appear to proceed through allylquinol intermediates which undergo rearrangement under the influence of BF_{3}. The success of this synthesis of vitamin $K_{2(5)}$ and coenzyme Q_{1} depends on the fact that the reaction of 3-methyl-2-butenyltin with quinones occurs at the α carbon of the allylic system.

Introduction

In the past decade there has been considerable interest in the reactions of allyltin compounds ${ }^{2}$ because of their marked
reactivity toward electrophiles. ${ }^{3}$ However, only a few synthetically useful reactions of allyltin reagents have been reported, Trialkylallyltin reagents are easily prepared without

Table I. Allyltrialkyltin

	R^{1}	R^{2}	R^{3}	R^{4}
2a	Bu	H	H.	H
2b	Bu	CH_{3}	H	H
2c	Bu	H	H	trans $-\mathrm{CH}_{3}$
2d	CH_{3}	H	H	trans $-\mathrm{CH}_{3}$
2e	Bu	H	CH_{3}	CH_{3}
2 f	CH_{3}	H	CH_{3}	CH_{3}
2g	Bu	H	H	trans- Ph

rearrangement from the corresponding allylic halides and they have been shown to react readily with aldehydes and ketones at $-78^{\circ} \mathrm{C}$ when BF_{3} is present. ${ }^{4}$ In the present study these tin reagents have been used for the introduction of allylic groups to the quinonoid nucleus. In this way we have succeeded in synthesizing biologically active isoprenyl quinones. ${ }^{5}$

Isoprenylated quinones are widely distributed in nature. They play an important role in several metabolic sequences, e.g., in the electron transport chain, in oxidative phosphorylation, and in abnormal blood clotting. The direct introduction of isoprenyl groups into a quinonoid nucleus is difficult to achieve. The most common method of synthesis of such quinones involves a Friedel-Crafts reaction between a hydroquinone and the appropriate allylic alcohol, followed by mild oxidation to the quinone. ${ }^{6}$ However, such preparations suffer from concurrent side reactions such as chromanol formation, ipso substitution, and side-chain cyclization. Despite a number of modifications, e.g., the use of allylic halides, masked quinones, and hybrid Lewis acid catalysts, ${ }^{7}$ the reaction remains fundamentally limited by the inherent instability of allylic alcohol components under the acidic conditions employed. ${ }^{8}$ Other, more recent, procedures include: (1) the direct reaction of π-allylnickel complexes with quinones, a reaction of limited utility, ${ }^{9}$ (2) the well-known coupling of organometallic derivatives with allylic halides, ${ }^{10 \mathrm{~d}, \mathrm{f}}$ (3) the coupling of aryl bromides with π-allylnickel complexes, ${ }^{10 \mathrm{a}-\mathrm{c}}$ and (4) the use of cyanosilylated quinones. ${ }^{10 \mathrm{e}}$ The utility of the last three methods is diminished by the difficulty of preparing the starting materials in cases of biological interest. Mention should also be made of the report that isoprenylation of quinones has been achieved by a free-radical process. ${ }^{11}$

In 1978 we published a preliminary account of the isoprenylation of quinones by the agency of trialkylallyltin reagents. ${ }^{12 a}$ This paper is concerned with the detailed description of that reaction.

Results and Discussion

Synthetic Study. The reaction between trialkylallyltins

(Table I) and quinones is initiated at $-78^{\circ} \mathrm{C}$ and then the system is gradually allowed to warm to room temperature. It will be seen from Table II that good to excellent yields of pure products are obtained. Of particular interest is the fact that this reaction constitutes a direct and efficient synthesis of pure naturally occurring isoprenyl quinones, e.g., coenzyme Q_{1} (9 , 75% yield) and vitamin $\mathrm{K}_{2(5)}(7,78 \%$ yield).

There are four major aspects to these reactions: (a) the Lewis acid employed, (b) the matter of quinol intermediates, (c) regiospecificity as regards the quinol, (d) the question of α vs. γ substitution in the allylic systems. For reasons which

Scheme I

will become apparent the second and third of these subjects will be discussed together.
A. The Lewis Acid. In the absence of a Lewis acid the reaction of eq 1 does not occur. A study of the relative utility of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{TiCl}_{4}, \mathrm{AlCl}_{3}$, and SnCl_{4} revealed that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and SnCl_{4} were clearly superior to the other two (Table III). ${ }^{13}$ In this work $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was used throughout.

Methylene chloride was routinely employed as the solvent. Experiments employing $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in THF and in $\mathrm{Et}_{2} \mathrm{O}$ gave distinctly less satisfactory results; thus, in THF and in $\mathrm{Et}_{2} \mathrm{O}$ the product (4) was contaminated with complex byproducts.
B. The Matter of Quinol Intermediates and Regiospecificity as Regards the Quinone. Allyltin compounds undergo 1,2 addition to simple ketones. ${ }^{4 \mathrm{~b}, \mathrm{c}}$ But with α, β-unsaturated ketones only 1,4 addition has been observed. ${ }^{4 \mathrm{c}}$ We have now found that with o-quinones and with 9,10 -anthraquinones allyltin compounds give exclusively 1,2 addition (Table II, entries 25 and 26). Similarly 2,6 -dimethoxybenzoquinone and 2 -methoxy-1,4-naphthoquinone provided only one of the possible quinol adducts (entries 22 and 23). These results suggest the possibility of 1,2 addition with p-quinones (Scheme I).

When trimethylbenzoquinone reacted with 2 equiv of 2 a in the presence of 5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at -90 to $-85^{\circ} \mathrm{C}$ for 3 min , followed by quick partitioning of the cold reaction mixture between ether and aqueous saturated NaCl solution, four products were obtained and the yields were estimated by NMR using chloroform as an internal standard. Separation by preparative layer chromatography (PLC) on silica gel gave two quinols, 16 (23\%) and $17(5 \%)$, accompanied by enedione 6

(42%) and allyltrimethylhydroquinone 18 (23\%). The quinols, 16 and 17 , showed characteristic NMR spectra and were differentiated by their relative chemical shifts and couplings of the ring methyl and hydrogen signals reported before: ${ }^{\mathrm{bb}}$ for 16, $\delta 1.76(3 \mathrm{H}, J=1 \mathrm{~Hz}), 2.00(6 \mathrm{H})$, and $5.92(1 \mathrm{H}, J=1 \mathrm{~Hz})$, respectively, and for $17, \delta 1.86(6 \mathrm{H}), 1.96(3 \mathrm{H}, J=1 \mathrm{~Hz})$, and $6.50(1 \mathrm{H}, J=1 \mathrm{~Hz})$, respectively. These allylquinols were stable once purified for several weeks at $-30^{\circ} \mathrm{C}$. The isolated yields of 16 and 17 were considerably decreased as compared with those determined by NMR (Table IV). On the other hand, the isolated yields of 6 and 18 were increased. These allylquinols must have rearranged to 6 and 18 in the course of isolation by silica gel PLC. Longer reaction time (5 and 20 $\mathrm{min})$ and higher reaction temperature $\left(-85\right.$ to $\left.-10^{\circ} \mathrm{C}\right)$ affected the yield of the products: decrease of the yields of 16 and 17 and increase of those of 6 and 18. These results suggests that these quinols are the primary products in our system.

Table II. Reaction of Allyltin Reagent with Quinones

entry	quinone	allyltin	product	$\%$ yield ${ }^{\text {a }}$
1	p-benzoquinone	2a	allylbenzoquinone ${ }^{\text {b }}$	85 (66)
2		2 b	(2-methyl-2-propenyl)benzoquinone ${ }^{\text {b }}$	(45)
			p-benzoquinone ${ }^{b}$	(14)
		2 e	(3-methyl-2-butenyl)benzoquinone ${ }^{\text {b }}$	(55)
4	2,3-dimethylbenzoquinone	2a	5-allyl-2,3-dimethylhydroquinone	(72)
			2,3-dimethylhydroquinone	(10)
5		2 e	5-(3-methyl-1-butenyl)-2,3-dimethylhydroquinone	(62)
6		2 g	5-(trans-cinnamyl)-2,3-dimethylhydroquinone	(81)
7	2,5-dimethylbenzoquinone	2a	3-allyl-2,5-dimethylhydroquinone	(90)
8		2 b	3 -(2-methyl-2-propenyl)-2,5-dimethylhydro- quinone	99.5 (76)
			5	trace
9		2 e	3-(3-methyl-2-butenyl)-2,5-dimethylhydroquinone	(82)
10	2,5-dimethylbenzoquinone 2,6-dimethylbenzoquinone	2 g	3-(trans-cinnamyl)-2,5-dimethylhydroquinone	(91)
11		2 a	2-allyl-3,5-dimethylhydroquinone	(82)
12		2 e	2-(3-methyl-2-butenyl)-3,5-dimethylhydroquinone	(70)
13		2 g	2 -(trans-cinnamyl)-3,5-dimethylbenzoquinone ${ }^{\text {b }}$	(49)
			2-(1-phenyl-2-propenyl)-3,5-dimethylbenzoquinone ${ }^{b}$	(32)
14	2,5-di-tert-butylbenzoquinone	2a	2-allyl-5-tert-butylhydroquinone	42 (36)
			2,5-di-tert-butylhydroquinone	38 (35)
15		2 e	2,5-di-tert-butylhydroquinone	(88)
16	trimethylbenzoquinone	2a	allyltrimethylhydroquinone	$\begin{aligned} & 44 \text { (37) } \\ & 54 \text { (54) } \end{aligned}$
17		2e	(3-methyl-2-butenyl)trimethylbenzoquinone ${ }^{\text {b }}$	68 (65)
18	1,4-naphthoquinone	2 a	2-allyl-1,4-naphthoquinone ${ }^{\text {b }}$	(42)
19	2-methyl-1,4-naphthoquinone	2 e	vitamin $\mathrm{K}_{2(5)},{ }^{\text {b }}$	(78)
			8	(18)
20	2,3-dimethoxy-5-methylbenzo- quinone	2a	2-allyl-3-methyl-5,6-dimethoxybenzoquinone ${ }^{\text {b }}$	(61)
21		2 e	coenzyme $\mathrm{Q}_{1}, 9^{\text {b }}$	(75)
22	2,6-dimethoxybenzoquinone	2a	10	(52)
23	2-methoxy-1,4-naphthoquinone	2a	11	(90)
24	1,5-dichloro-9,10-anthraquinone	2 b	12	(95)
25	9,10-phenanthrenequinone	2 a	13	(86)
26	acenaphthenequinone	2a	14	(91)

${ }^{a}$ Yield in parentheses is isolated yield; others were determined by GLC or NMR. ${ }^{b}$ Products after oxidation with silver oxide or ferric chloride.

Table III. Effect of Solvents and Lewis Acids on the Reaction of Equation 1^{a}

solvent	Lewis acid	Lewis acid/ Quinone	$\%$ yield b	
			4	1
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	1.0	$54{ }^{e}$	15
		2.0	80	c
		3.0	85	c
THF		2.0	42^{e}	20
$\mathrm{Et}_{2} \mathrm{O}$		2.0	$57{ }^{e}$	c
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	TiCl_{4}	2.0	53	36
	$\mathrm{AlCl}_{3}{ }^{\text {d }}$	2.0	29	68
	SnCl_{4}	2.0	73	c

${ }^{a}$ All reactions were performed in $1-\mathrm{mmol}$ scale. ${ }^{b}$ After oxidation of the reaction mixture with aqueous FeCl_{3} solution, yield was determined by GLC and NMR. ${ }^{c}$ Not detected. ${ }^{d}$ Aluminum chloride was added at room temperature and then the tin reagent was added at $-78^{\circ} \mathrm{C}$. ${ }^{e}$ Accompanied by unassignable complex products.

To clarify the stage of the rearrangement these quinols were separately treated under three different conditions (Table V). Under thermal or protic acid catalyzed conditions, these quinols required several hours for their complete rearrangement, but they underwent rapid convernsion even below $-50^{\circ} \mathrm{C}$ by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to give two rearranged products (6 and 18), So allylation of trimethylbenzoquinone could occur initially at

䟚
carbonyl in the fashion of 1,2 addition; then the resulting stannyl ethers of the allylquinols may immediately give the products, 6 and 18. Allylations of other quinones may take place in a similar fashion.

The effect of BF_{3} upon the mode of dienone-phenol rearrangement is worthwhile to study. Under protic acid conditions allylquinol 16 gave $6(34 \%)$ and $18(60 \%)$ at $20^{\circ} \mathrm{C}$. Treatment of the solution of 16 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at -70 to $20^{\circ} \mathrm{C}$ produced $6(45 \%)$ and $18(55 \%) . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ slightly promotes [1,2] rearrangement of this quinol. Similarly, quinol 17, upon treatment with protic acid, gave predominantly $6(90 \%)$ via $[3,3]$ rearrangement. In marked contrast, treatment of 17 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ produced almost equal amount of $\mathbf{1 8}(44 \%$, probably via [1,2] rearrangement) and $6(47 \%)$. Thus $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ enhances [1,2] rearrangement of allylquinols and increases the production of 18 from 17 . The following experimental results also support this comment. Under the standard reaction conditions, with increasing amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the product ratio $(\mathbf{1 8 / 6})$ monotonously increased, and the proportion of 18 reached 79% when 5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was utilized.

Furthermore, another marked contrast of the present reaction compared with the reported one was exemplified in the allylation of 2,5 -dimethylbenzoquinone. Both the reaction with π-allylnickel bromide and that with trimethylsilylcyanide-allyl Grignard reagent ${ }^{9 b}$ gave solely enedione 5 ($[3,3]$ rearranged product, eq $3 \mathrm{a}, \mathrm{b}$), By the present method allylhydroquinone

Table IV. Effect of Reaction Time and Temperature on the Product Distributions of Equation 2a

reaction conditions					
	$\mathbf{1 6}$	$\mathbf{1 7}$	yield, $\%^{b}$	$\mathbf{1 8}$	$\mathbf{6}$
$\mathbf{a},-90$ to $-85^{\circ} \mathrm{C}, 3 \mathrm{~min}$	$53(22)$	$10(5)$	$8(42)$	$23(42)$	$0(0)$
$\mathbf{b},-90$ to $-85^{\circ} \mathrm{C}, 5 \mathrm{~min}$	41	7	10	41	0
$\mathbf{c},-90$ to $-85^{\circ} \mathrm{C}, 20 \mathrm{~min}$	41	6	10	41	0
$\mathbf{d},-90$ to $-85^{\circ} \mathrm{C}, 20 \mathrm{~min}$; then -85 to $-10^{\circ} \mathrm{C}, 30 \mathrm{~min}$	23	0	17	55	5

${ }^{a}$ All reactions were performed in $1-\mathrm{mmol}$ scale in $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{b}$ Yield in parentheses is of isolated product. Others are estimated by NMR using chloroform as an internal standard.
Table V. Rearrangement of Allylquinols $\mathbf{1 6}$ and 17

allylquinol	reaction conditions	product, \% yield ${ }^{\text {a }}$			recovery of quinol ${ }^{a}$
		6	18	19	
16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 8 h	0	80	5	0
	$2 \mathrm{~N} \mathrm{HCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$	11	33	0	55
	$20^{\circ} \mathrm{C}, 6 \mathrm{~h}$	34	60	0	0
	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1 equiv) $/ \mathrm{CH}_{2} \mathrm{Cl}_{2},-70$ to $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$	45	55	0	0
17	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h	100	0	0	0
	$2 \mathrm{NHCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 20^{\circ} \mathrm{C}, 4 \mathrm{~h}$	90	trace	0	0
	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(0.5\right.$ equiv)/ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-73$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$	47	44	9	0

${ }^{a}$ Yield was determined by NMR using chloroform as an internal standard.

Table VI. Effect of the Amount of BF_{3}. OEt_{2} on Allylation of Trimethylbenzoquinone ${ }^{a}$

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} /$ quinone	rel ratio, $\%^{b}$		total yield, $\%^{b}$
	6	18	
1.0	64	36	84
2.0	58	43	96
3.0	38	62	99
5.0	21	79	100

${ }^{a}$ All reactions were performed in $1-\mathrm{mmol}$ scale under the standard conditions. ${ }^{b}$ Relative ratio and total yield were estimated by NMR integration using CHCl_{3} as an internal standard.
(a)

22 was the almost exclusive product ($99,5 \%$ yield) (probably via $[1,2]$ rearrangement, eq 3 d). ${ }^{14}$ When the amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was diminished down to 0.5 equiv to that of quinone, then enedione 5 (45% yield) was obtained with a comparable amount of allylhydroquinone 22 (43% yield) (eq $3 c$). These results support the hypothesis that the amount of $\mathrm{BF}_{3} \mathrm{em}$ ployed clearly increases the proportion of [1,2] rearrangement pathway against [3,3] one. The facile [1,2] rearrangement in the quinol system by BF_{3} could be interpreted in terms of a " π-protonation mechanism". 15
C. The Question of α vs. γ Substitution on the Allylic Systems. In the addition reaction of unsymmetrical allylic reagents to the carbonyl group, the regioselectivity of the addition (α or γ addition) of the allylic moiety always becomes an issue. To discuss the orientation of primary addition of allyltin reagents to quinones, corresponding quinols were isolated. Under the standard conditions, 2-methoxy-1,4-naphthoquinone (23)
gave a stable quinol (vide supra). When 23 was treated with 2 c and quenched at $-30^{\circ} \mathrm{C}$, three quinols were obtained: two diastereomers (γ adduct), 24 (17\%) and $\mathbf{2 5}$ (7\%), and another isomeric quinol (α adduct), $\mathbf{2 6}(9 \%)$. These isomers were sep-

arated by preparative layer chromatography and purified by medium-pressure liquid chromatography. The reaction with 2 e required quenching at lower temperature $\left(-50^{\circ} \mathrm{C}\right)$ to avoid successive reaction, and then α product (27,10\%) was isolated accompanied by the rearranged product ($\mathbf{2 8}, \mathbf{7 \%}$) (eq 5).

In the reaction of allyltin compounds with carbonyl, 1,2 addition inevitably occurred at the γ-allyl terminus. ${ }^{26}$ Therefore, this reaction is the first example, to my knowledge, in which the α-addition product has been isolated and characterized. These evidences show that the addition does not

29
always proceed via six-membered transition state such as 29 when it suffers from serious steric difficulties,

In the reaction with quinones, crotyltin reagent showed high regioselectively, which depends on the substitutent on p-quinones (Table VII): when 2,3 positions of p-quinones are free from substituents (e.g., p-benzoquinone, 1,4 -naphthoquinone, 2,3-dimethylbenzoquinone), it gave predominantly " γ ad-

Table VII. Reaction of trans-2-Butenyltrialkyltin Reagent with Quinones

quinone	crotyltin	product distribution ${ }^{\text {a }}$		stereochemistry ${ }^{b}$ of α adduct trans/cis	$\begin{gathered} \% \\ \text { yield }{ }^{c} \end{gathered}$
		人 adduct, \%	γ adduct, \%		
p-benzoquinone	2c	5	95	d	(75) ${ }^{\text {e }}$
2,3-dimethylbenzoquinone	2d	<1	<99	d	$70(41)^{f}$
2,3-dichlorobenzoquinone	2d	37	63	d	(88)
1,4-naphthoquinone	2d	<1	>99	d	(98) ${ }^{\text {e }}$
2,5-dimethylbenzoquinone	2c	>99	<1	>98/2	(69)
2,6-dimethylbenzoquinone	2 c	>99	<1	96/4	(25) ${ }^{\text {g }}$
2,5-di-tert-butylbenzoquinone	2d	>99	<1	$\sim 70 / 30$	$(42)^{h}$

" Determined by NMR integration of the side-chain α proton after oxidation of the corresponding hydroquinone. ${ }^{b}$ Determined by NMR integration of the side-chain methyl proton. ${ }^{c}$ Yield in parentheses is after isolation; the other is determined by NMR integration using chloroform as an internal standard. ${ }^{d}$ Not determined. ${ }^{e}$ Isolated yield after oxidation. f The corresponding amount of the starting quinone was recovered. g Accompanied by 2,6-dimethylbenzoquinone (25\%) and 2,6-di(2-butenyl)-3,5-dimethylbenzoquinone (9\%). ${ }^{h}$ Accompanied by 2,5 -di-tertbutylhydroquinone (57\%).
ducts" ($\gamma / \alpha \geq 95 / 5$). On the other hand, 2,5 - or 2,6 -disubstituted quinones (e.g., 2,5 -dimethylbenzoquinone or 2,6 dimethylbenzoquinone) exclusively afford " α adducts" $(\alpha / \gamma$ $>99 / 1$). This remarkable selectivity may be interpreted in terms of steric interactions between the introduced 2-butenyl group and the ring substituent rather than the stability of allylic cation. ${ }^{17} \mathrm{~A} \gamma$ addition of these reagents may suffer from rather severe steric interactions between quinone and allylic moieties, Prenyltin compounds (2e,f), which are more balky than crotyltin, exclusively afford " α adducts", In appearance, prenyltin reagents react similarly to π-3,3-dimethylallylnickel complex ${ }^{9 b}$ (not 3,3-dimethylallylmagnesium bromide ${ }^{10 e}$) to circumvent the steric interaction mentioned above.

Experimental Section

General. Melting points and boiling points are uncorrected. Proton magnetic resonance spectra were obtained with JEOL PS-100 spectrometer with tetramethylsilane as an internal standard and the chemical shifts are reported in δ values. Infrared spectra were measured on with either JASCO 402G or IRA-1 spectrophotometers. Mass spectra were measured with either Hitachi M-52 or JEOL JMS-01SG-2 mass spectrometers. Analytical GLC was performed on a JEOL JGC-20K gas chromatograph with a flame ionization detector. Liquid chromatography was performed with either $3.9 \times$ 300 mm or $7.0 \times 300 \mathrm{~mm}$ columns packed with Waters μ-Porasil silica gel. Column chromatography was performed using Wako reagent grade silica gel (100-200 mesh). Analytical and preparative thin layer chromatographs were performed using Merck silica gel F-254. Microanalyses were performed by the Microanalytical Laboratory of Kyoto University, Kyoto, Japan.

Materials. All solvents were freshly distilled and stored under a nitrogen atmosphere. Dichloromethane was distilled from calcium hydride. Ether and THF were distilled from benzophenone ketyl and stored over sodium wire. Tributyltin chloride was distilled at 0.1 mmHg . Trimethyltin bromide was prepared by the method of Kraus. ${ }^{18}$ Allyl bromide, trans-2-butenyl chloride, and 2-methyl-2-propenyl bromide are commercially available and were used without further purification. 3-Methyl-2-butenyl chloride ${ }^{19}$ and cinnamyl bromide ${ }^{20}$ were prepared from the corresponding allylic alcohols. 2,3-, 2.5-, and 2,6-dimethylbenzoquinones were prepared from appropriate phenols by the method of Teuber et al. ${ }^{2 t}$ 2,5-Di-tert-butylbenzoquinone and trimethylbenzoquinone were prepared by the oxidation of the appropriate hydroquinone following the procedure described by Fieser et al. ${ }^{22} 2$-Methoxy-1,4-naphthoquinone was prepared by the method of Otsuki. ${ }^{23}$ 2,6-Dimethoxybenzoquinone was prepared by the method of Ullmann. ${ }^{24}$ All other quinones studied are commercially available and were sublimed prior to use. The following tin reagents were prepared using previously reported methods: trans-2-butenyltributyltin (2c), ${ }^{25}$ trans-2-butenyltrimethyltin (2d). ${ }^{26}$ Allyltributyltin (2a) was prepared by the coupling reaction of allylmagnesium bromide with tributyltin chloride following the procedure described by Abel et al, ${ }^{26}$ $\mathrm{TiCl}_{4}, \mathrm{AlCl}_{3}, \mathrm{SnCl}_{4}$, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were used without further purification.
(2-Methyl-2-propenyl)tributyltin (2b). This tin reagent was prepared
by the coupling reaction of 2-methyl-2-propenylmagnesium bromide with tributyltin chloride following the procedure described by Abel: ${ }^{26}$ bp $121-122^{\circ} \mathrm{C}(4 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.91$ and $1.40(\mathrm{~m}, 27 \mathrm{H}, 3$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 4.35(\mathrm{br}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{C}$); IR (neat) $2960(\mathrm{vs}), 2920(\mathrm{vs}), 1625(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1455(\mathrm{~s})$, 1370 (s), 1270 (s), $850 \mathrm{~cm}^{-1}$ (vs, $\mathrm{C}=\mathrm{CH}_{2}$).

Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{Sn}\right) \mathrm{C}, \mathrm{H}$.
(3-Methyl-2-butenyl)tributyltin (2e). This tin reagent was prepared by the reaction of tributyltin lithium ${ }^{27}$ with 3 -methyl-2-butenyl bromide: bp $114-116^{\circ} \mathrm{C}(1 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.90$ and $1.4(\mathrm{~m}, 29 \mathrm{H}$, $3 \mathrm{C}_{4} \mathrm{H}_{9}$ and $\left.\mathrm{CH}_{2}\right), 1.54\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right)$, $5.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=8 \mathrm{~Hz}$); IR (neat) 2950 (vs), 2910 (vs), 1665 ($\mathrm{w}, \mathrm{C}=\mathrm{C}$) , 1463 (s), 1377 (s), 1118 (s), $845 \mathrm{~cm}^{-1}(\mathrm{~s})$.

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{Sn}\right) \mathrm{C}, \mathrm{H}$.
(3-Methyl-2-butenyl)trimethyltin (2f). This tin reagent was prepared by the reaction of trimethyltin lithium ${ }^{27}$ with 3 -methyl-2-butenyl bromide: bp $56-57^{\circ} \mathrm{C}(15 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.06\left(2 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, $\left.J_{\mathrm{Sn} 117_{-\mathrm{H}}}=50, J_{\mathrm{Sn} 119-\mathrm{H}}=52 \mathrm{~Hz}\right), 1.54\left(\mathrm{~d}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}, J=1 \mathrm{~Hz}\right)$, $1.66\left(\mathrm{br}, 5 \mathrm{H}\right.$, trans $-\mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2}\right), 5.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=1,8$ Hz); IR (neat) 2960 (vs), 2900 (vs), 1445 (s), 1370 (s), 1185 (s), 1120 (vs), 840 (s), $755 \mathrm{~cm}^{-1}(\mathrm{vs})$.

Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{Sn}\right) \mathrm{C}, \mathrm{H}$.
trans-Cinnamyltributyltin $(\mathbf{2 g})$. This tin reagent was prepared by the coupling reaction of cinnamylmagnesium bromide with tributyltin chloride following a previously described method: $:^{28}$ bp $163-166^{\circ} \mathrm{C}$ $(0.4 \mathrm{~mm}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.89$ and $1.5\left(\mathrm{~m}, 27 \mathrm{H}, 3 \mathrm{C}_{4} \mathrm{H}_{9}\right), 1.93(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right), 5.6-6.4(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.09(\mathrm{~m}, 5 \mathrm{H}$, aromatic H); IR (neat) 2925 (vs), 1637 (s, C=C), 1598 (s, ring), 1495 (s, ring), 1463 (s), 1672 (s), $958 \mathrm{~cm}^{-1}$ (vs, trans $-\mathrm{CH}=\mathrm{CH}$).

Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{Sn}\right) \mathrm{C}, \mathrm{H}$.
Reaction of Allyltrialkyltin Reagents with Quinones. General Reaction Procedure. The reactions of quinones and allyltrialkyltins were all carried out by the same general procedure. The quinone was placed in a $50-\mathrm{mL}$ two-neck flask fitted with a stopcock and a rubber serum cap. The vessel was alternately evacuated and filled with nitrogen on a vacuum line. After addition of dichloromethane (10 mL), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1 mmol) was added at $-78^{\circ} \mathrm{C}$ with constant stirring. The allyltrialkyltin (2 mmol) was slowly added from a syringe and warmed to room temperature for about $1-2 \mathrm{~h}$. The reaction mixture was quenched with 30 mL of 2 N HCl and extracted with ether. The ethereal phase was washed with water, then saturated aqueous NaCl , and then dried over MgSO_{4}. After evaporation, products were purified (A) by recrystallization from ether-hexane, or (B) by preparative chromatography on silica gel by eluting with ether-hexane mixture. When isolation of products was either (A) impossible because of their air sensitivity or (B) difficult because of contamination with other products, the reaction mixture was treated with $\mathrm{Ag}_{2} \mathrm{O}$ in ether or with aqueous FeCl_{3} solution; then products were separated and purified by preparative layer chromatography.

Effect of Solvent and Lewis Acid on the Allylation of \boldsymbol{p}-Benzoquinone. The reaction of p-benzoquinone with 2a was performed in 1mmol scale following by the general reaction procedure. After oxidation with aqueous FeCl_{3}, the reaction mixture was evaporated. Products were assigned by comparison with authentic samples and yields were estimated by NMR using cis-1,2-dichloroethylene as an internal standard (Table II).

Entry 1. p-Benzoquinone ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$) was treated with allyltributyltin ($662 \mathrm{mg}, 2.0 \mathrm{mmol}$) by the general procedure. After oxidation with aqueous FeCl_{3} solution, isolation by preparative layer chromatography gave allylbenzoquinone ($96 \mathrm{mg}, 66 \%$) a brown oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 2,16\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right), 5.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, $5.6-6.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.50$ and $6.64(\mathrm{~s}, 3 \mathrm{H}$, ring H); IR (neat) 2970 (s), 1645 (vs, $\mathrm{C}=\mathrm{O}$), 1590 (vs), 1450 (s), 1350 (s), 1295 (vs), 1120 (s), 1195 (s), 1010 (vs), 990 (sh), 905 (vs, $\mathrm{CH}=\mathrm{CH}_{2}$), $825 \mathrm{~cm}^{-1}$ (s).

Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 2. The reaction of p-benzoquinone (108 mg) with (2-methyl-2-propenyl)tributyltin ($690 \mathrm{mg}, 2.0 \mathrm{mmol}$) was undertaken according to the general reaction procedure. After oxidation by aqueous FeCl_{3} solution, isolation by preparative layer chromatography gave p-benzoquinone ($15 \mathrm{mg}, 14 \%$) and (2 -methyl-2-propenyl) benzoquinone ($73 \mathrm{mg}, 45 \%$), a brown oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.76(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.77$ and 4.90 (each s, $2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 6.50 and 6.69 (each s, 3 H , ring H); IR (neat) 3060 (m), 2993 (s), 2943 (s), 1664 (vs, $\mathrm{C}=\mathrm{O}$), 1600 (vs), 1447 (s), 1380 (s), 1353 (s),1290 (vs), 1080 (s), 1070 (s), $896 \mathrm{~cm}^{-1}$ (vs, $\mathrm{C}=\mathrm{CH}_{2}$); MS m/e 162 ($\mathrm{P}, 98 \%$), 147 (base), 134 (46\%), 133 (37\%), 119 (59\%), 105 (29\%), 81 (67\%).

Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 3. The reaction of p-benzoquinone (108 mg) with (3-methyl-2-butenyl)tributyltin ($718 \mathrm{mg}, 2.0 \mathrm{mmol}$) was undertaken in the usual fashion. After oxidation with aqueous FeCl_{3} solution and isolation by preparative layer chromatography, (3-methyl-2-butenyl) benzoquinone was obtained ($98 \mathrm{mg}, 55 \%$), yellow crystals: mp $29-30{ }^{\circ} \mathrm{C}\left(\right.$ lit..$^{29} 30.5^{\circ} \mathrm{C}$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.70\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.80$ (s, 3 H , trans $-\mathrm{CH}_{3}$), $3.11\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right.$), $5.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$, $J=8 \mathrm{~Hz}$), 6.52 and 6.76 (each $\mathrm{s}, 3 \mathrm{H}$, ring H); IR (neat) $2960(\mathrm{~s})$, 1668 (vs, C=O), 1600 (vs), 1455 (s), 1395 (s), 1300 (vs), 1100 (s), 970 (s), 955 (s), $890 \mathrm{~cm}^{-1}$ (s); MS m/e 176 (P,55\%), 161 (base), 147 (28%), 133 (55%), 105 (35\%), 94 (20\%), 91 (20\%), 55 (33\%).

Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 4. The reaction of 2,3-dimethylbenzoquinone ($136 \mathrm{mg}, 1.0$ mmol) with allyltributyltin (662 mg) was undertaken in the usual manner. After separation by preparative layer chromatography, 2,3-dimethylhydroquinone ($14 \mathrm{mg}, 10 \%$) and 5 -allyl-2,3-dimethylhydroquinone ($130 \mathrm{mg}, 72 \%$) were obtained as colorless needles: $\mathrm{mp} 140.5-141.5^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two ring $\left.\mathrm{CH}_{3}\right)$, $3.27\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 4.54$ (br, $2 \mathrm{H}, 2 \mathrm{HO}$), $5.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.7-6.2(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.34(\mathrm{~s}, 1 \mathrm{H}$, ring H$) ;$ IR (KBr) 3250 (vs, OH), 1643 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1460 (s), 1420 (s), 1320 (s), 1223 (vs), $1196(\mathrm{vs}), 1108(\mathrm{~m}), 1020(\mathrm{~m}), 995$ and $906 \mathrm{~cm}^{-1}(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}_{2}$); MS $m / e 178$ (P, base), 163 (37\%), $135(26 \%)$.

Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\right), \mathrm{C}, \mathrm{H}$.
Entry 5. The reaction of 2,3-dimethylbenzoquinone (136 mg) with (3 -methyl-2-butenyl) tributyltin (718 mg) was undertaken in the usual manner. After separation by preparative layer chromatography, (3-methyl-2-butenyl)-2,3-dimethylhydroquinone ($206 \mathrm{mg}, 62 \%$) was obtained as white needles: $\mathrm{mp} 111-112^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.78(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ ring $\left.\mathrm{CH}_{3}\right), 3.24\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right)$, $4.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.24(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=7 \mathrm{~Hz})$, $6.40(\mathrm{~s}, \mathrm{l} \mathrm{H}$, ring H); $1 \mathrm{R}(\mathrm{KBr}) 3200(\mathrm{vs}, \mathrm{OH}), 1422(\mathrm{vs}), 1212$ (vs), $1075 \mathrm{~cm}^{-1}(\mathrm{vs}) ; \mathrm{MS}$ m/e 206 (P, 55\%), 189 (60\%), 161 (48\%), 150 (base), 121 (42\%).

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 6. The reaction of 2,3 -dimethylbenzoquinone (136 mg) with trans-cinnamyltributyltin ($812 \mathrm{mg}, 1.0 \mathrm{mmol}$) was undertaken in the usual manner. After separation by crystallization and purification by recrystallization from ether-hexane, 5-(trans-cinnamyl)-2,3-dimethylhydroquinone was obtained as white needles: $\mathrm{mp} 132-133^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.14\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ ring $\left.\mathrm{CH}_{3}\right), 3.40\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $6 \mathrm{~Hz}), 4.4(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HO}), 6.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$ and hydroquinone ring H$), 7.21(\mathrm{~m}, 5 \mathrm{H}$, aromatic H$) ; \mathrm{IR}(\mathrm{KBr}) 3330(\mathrm{vs}, \mathrm{OH}), 1475$ (s), 1325 (s), 1220 (vs), 1075 (vs), $965 \mathrm{~cm}^{-1}$ (s, trans- $\mathrm{CH}=\mathrm{CH}$); MS $m / e 254$ (P, base), 163 (27\%), 150 (100%).

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Oxidation of the hydroquinone by $\mathrm{Ag}_{2} \mathrm{O}$ in ether quantitatively gave 5-(trans-cinnamyl)-2,3-dimethylbenzoquinone as yellow crystals: $\operatorname{mp} 61-62^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.97\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ ring $\left.\mathrm{CH}_{3}\right), 3.27(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=6 \mathrm{~Hz}\right), 6.11(\mathrm{dt}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}, J=6,16 \mathrm{~Hz}), 6.45(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}, J=16 \mathrm{~Hz}), 6.47(\mathrm{~s}, 1 \mathrm{H}$, quinone ring H$), 7.21(\mathrm{~m}$, 5 H , aromatic H); IR (neat) 1651 (vs, $\mathrm{C}=\mathrm{O}$), $1620\left(\mathrm{~m}^{\circ}\right), 1498(\mathrm{~m})$, $1451(\mathrm{~m}), 1381(\mathrm{~m}), 1316(\mathrm{~s}), 1270(\mathrm{~m}), 970(\mathrm{~s}, \mathrm{CH}=\mathrm{CH}), 783$ and

760 (vs), $695 \mathrm{~cm}^{-1}$ (s); MS m/e 252 (P, base), 237 (50%), 224 (9%), $205(15 \%), 181(11 \%), 161$ (13%), 136 (26%), 121 (40%), 119 (90%), 117 (95\%)

The isomeric purity of the side-chain double bond was determined to be all-trans from NMR analysis.

Entry 7. The reaction of 2,5 -dimethylbenzoquinone (136 mg) with allyltributyltin (662 mg) was undertaken in the usual manner. After separation by preparative layer chromatography was obtained 3 -allyl-2,5-dimethylhydroquinone ($160 \mathrm{mg}, 90 \%$) as white needles: mp $141-142{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=6 \mathrm{~Hz}), 4.2(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HO}), 4.8-5.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.7-6.1$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), $6.44(\mathrm{~s}, \mathrm{I} \mathrm{H}$, ring H$)$; IR (KBr) 3240 (vs, OH), 1629 (s, $\mathrm{C}=\mathrm{C}$), 1365 (vs), 1209 (vs), 998 and $907 \mathrm{~cm}^{-1}$ (m, $\mathrm{CH}=\mathrm{CH}_{2}$); MS m/e 178 (P, base), 163 (31\%), 135 (25\%).

Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 8 . The reaction of 2,5 -dimethylbenzoquinone (136 mg) with $\mathbf{2 b}(690 \mathrm{mg})$ was undertaken according to the general procedure. After separation by preparative layer chromatography was obtained 3 -(2-methyl-2-propenyl)-2,5-dimethylhydroquinone ($123 \mathrm{mg}, 76 \%$) as colorless needles: mp $117-118^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.77(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$), 2.11 and 2.14 (each s, $6 \mathrm{H}, 2$ ring CH_{3}), 3.32 (s, 2 H , $\left.\mathrm{CH}_{2}\right), 4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}, J=20 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}, J=$ 20 Hz), 6.39 (s, I H, ring H); IR (KBr) 3320 (vs, OH), 1645 (w), 1440 (s), 1415 (s), 1325 (s), 1230 (vs), 1200 (vs), 1190 (s), 1160 (s), 965 (s), 990 (s), 980 (s), $875 \mathrm{~cm}^{-1}$ (s); MS m/e 192 (P, base), 177 (52\%), 162 (5\%), 149 (18%).

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
A trace amount of the enedione 7 was detected by TLC and NMR spectroscopy.

Entry 9. The reaction of 2,5 -dimethylbenzoquinone (136 mg) with (3-methyl-2-butenyl)tributyltin (718 mg) was undertaken in the usual manner. After isolation by preparative layer chromatography, 3-(3-methyl-2-butenyl)-2,5-dimethylhydroquinone ($169 \mathrm{mg}, 82 \%$) was obtained as white needles: $\mathrm{mp} 153-154^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.74$ (s, 3 H , cis $-\mathrm{CH}_{3}$), $1.82\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ ring $\left.\mathrm{CH}_{3}\right)$, $3.34\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 4.31$ and 4.59 (each br, $2 \mathrm{H}, 2 \mathrm{HO}$), 5.18 (t, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=7 \mathrm{~Hz}$), $6.41(\mathrm{~s}, 1 \mathrm{H}$, ring H$) ; 1 \mathrm{R}(\mathrm{KBr}) 3320$ (vs, OH), 2920 (m), 1435 (s), 1320 (vs), 1223 (vs), 1050 (s), 943 (s), 850 cm^{-1} (s); MS m/e 206 (P, 94\%), 150 (base), 137 (56%), 122 (33\%).

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 10. The reaction of 2,5-dimethylbenzoquinone ($272 \mathrm{mg}, 2.0$ mmol) with trans-cinnamyltributyltin ($894 \mathrm{mg}, 2.2 \mathrm{mmol}$) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was performed. After routine isolation, 3-(trans-cinnamyl)-2,5-dimethylhydroquinone ($462 \mathrm{mg}, 91 \%$) was obtained as white needles: $\mathrm{mp} 125-126^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.24\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.56\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=4 \mathrm{~Hz}\right), 4.36$ (br, $2 \mathrm{H}, 2 \mathrm{HO}$), $6.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.47(\mathrm{~s}, 1 \mathrm{H}$, ring H), 7.24 (m, 5 H , aromatic H); IR (KBr) 3370 (vs, OH), 3025 (m), 2920 (m), 1473 (s), 1315 (s), 1220 (s), 1185 (s), 1165 (s), 1075 (s), $950 \mathrm{~cm}^{-1}$ (s, trans $-\mathrm{CH}=\mathrm{CH}$); MS m/e 254 (P, 97\%), 163 (30\%), 150 (base), 138 (28\%).

Oxidation of the hydroquinone by $\mathrm{Ag}_{2} \mathrm{O}$ in ether gave quantitatively 3-(trans-cinnamyl)-2,5-dimethylbenzoquinone as yellow crystals: $\operatorname{mp} 78-79{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.02\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.34(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 6.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}, J=7,15 \mathrm{~Hz}\right), 6.20(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}, J=15 \mathrm{~Hz}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.20(\mathrm{~m}, 5 \mathrm{H}$, aromatic H); IR (neat) $3040(\mathrm{~m}), 2925(\mathrm{~m}), 1640(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1610$ (s), 1440 (m), 1425 (m), 1375 (s), 1315 (s), 964 (s, trans $-\mathrm{CH}=\mathrm{CH}$), $780(\mathrm{~s}), 750(\mathrm{~s}), 685 \mathrm{~cm}^{-1}(\mathrm{~s}) ; \mathrm{MS} m / e 252$ (P, base), 237 (76%), 224 (16%), 209 (17%), 181 (12%), 161 (28%), 91 (48%).

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The isomeric purity of the side-chain double bond was determined to be all-trans from NMR analysis.

Entry 11. The reaction of 2,6 -dimethylbenzoquinone (136 mg) with allyltributyltin (662 mg) was performed in the usual manner. After routine isolation the product was separated by preparative layer chromatography and assigned to be 2-allyl-3,5-dimethylhydroquinone ($147 \mathrm{mg}, 82 \%$), obtained as white needles: $\mathrm{mp} 118-119^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right)$, $4.0(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{HO}), 4.8-5.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.6-6.0(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}$), 6.44 ($\mathrm{s}, 1 \mathrm{H}$, ring H); IR (KBr) $3260(\mathrm{vs}, \mathrm{OH}), 1640(\mathrm{~m})$, $1462(\mathrm{~s}), 1420(\mathrm{~s}), 1224(\mathrm{vs}), 1198(\mathrm{vs}), 1110(\mathrm{~s}), 997$ and $910 \mathrm{~cm}^{-1}$ ($\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$); MS m/e 178 (P, base), 163 (27\%), 135 (17\%).

Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 12. (3-Methyl-2-butenyl)tributyltin ($718 \mathrm{mg}, 2.0 \mathrm{mmol}$) was
added to 2,6-dimethylbenzoquinone (136 mg) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0$ mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, following the general reaction procedure. After general isolation the product was separated by preparative layer chromatography. 2-(3-Methyl-3-butenyl)-3,5-dimethylhydroquinone was obtained ($231 \mathrm{mg}, 70 \%$) as white needles: mp 124-125 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(\mathrm{~d}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}, J=2 \mathrm{~Hz}\right)$, $1.77\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2\right.$ ring $\left.\mathrm{CH}_{3}\right), 3.20\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=7 \mathrm{~Hz}), 4.2$ and 4.5 (each br, $2 \mathrm{H}, 2 \mathrm{HO}), 5.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$, $J=2,7 \mathrm{~Hz}), 6.38(\mathrm{~s}, 1 \mathrm{H}$, ring H); $1 \mathrm{R}(\mathrm{KBr}) 3370(\mathrm{vs}, \mathrm{OH}), 2920(\mathrm{~s})$, 1465 (vs), 1332 (vs). 1197 (vs), 1140 (s), 1120 (s), 850 (s), $830 \mathrm{~cm}^{-1}$ (s); MS m/e 206 (P, 78\%), 151 (82\%), 137 (base), 123 (25\%).

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 13. trans-Cinnamyltributyltin ($1.625 \mathrm{~g}, 4.0 \mathrm{mmol}$) was added to 2,6 -dimethylbenzoquinone ($272 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0$ mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, following the general reaction procedure. After oxidation with an excess amount of $\mathrm{Ag}_{2} \mathrm{O}$ and general isolation, two quinones were separated by preparative layer chromatography, developing with $85: 15$ hexane-ether. The upper band contained 163 mg (32%) of 2-(1-phenyl-2-propenyl)-3,5-dimethylbenzoquinone, an orange-yellow oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.91$ (s, 3 H , ring $\left.\mathrm{CH}_{3}\right), 2.00\left(\mathrm{~d}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}, J=1.5 \mathrm{~Hz}\right), 5.1-5.3(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.3\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.51(\mathrm{q}, 1 \mathrm{H}$, ring $\mathrm{H}, J=$ 1.5 Hz), 7.18 (m, 5 H , aromatic H); IR (neat) 3040 (w), $2930(\mathrm{w})$, 1653 (vs, $\mathrm{C}=\mathrm{O}$), 1614 (m), 1497 (m), 1453 (w), 1380 (m), 1362 (w), 1317 (w), 1260 (s), 1190 (m), $890 \mathrm{~cm}^{-1}(\mathrm{w})$; MS m/e 252 (P, 33\%), 237 (31%), 209 (13%), 181 (7%), 161 (10%), 121 (35%), 119 (94%), 117 (base).

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The lower band contained 246 mg (49%) of 2-(trans-cinnamyl)-3,5-dimethylbenzoquinone, orange-yellow cyrstals: mp 79-81 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.00\left(\mathrm{~d}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}, J=1 \mathrm{~Hz}\right), 1.05(\mathrm{~s}, 3 \mathrm{H}$, ring $\left.\mathrm{CH}_{3}\right), 3.30\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=6 \mathrm{~Hz}\right), 6.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}, J=$ $6,16 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} H \mathrm{Ph}, J=16 \mathrm{~Hz}), 6.47(\mathrm{q}, 1 \mathrm{H}$, ring $\mathrm{H}, J=1 \mathrm{~Hz}$), 7.19 (bs, 5 H , aromatic H); IR (neat) $3035(\mathrm{~m}), 2965$ (m), 2930 (m), 1650 (vs, C=O), 1620 (s), 1497 (m), 1435 (s), 1380 (s), $1362(\mathrm{~m}), 1320(\mathrm{~s}), 1287(\mathrm{~m}), 1260(\mathrm{~s}), 1189(\mathrm{~s}), 1100(\mathrm{~m}), 1030$ $(\mathrm{m}), 968(\mathrm{~s}$, trans $-\mathrm{CH}=\mathrm{CH}), 913(\mathrm{~m}), 886(\mathrm{~m}), 750 \mathrm{~cm}^{-1}(\mathrm{~m}) ;$ MS $m / e 252$ (P, base), 237 (74%), 224 (18\%), 209 (27%), 161 (63%), 91 (57\%).

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 14. Allyltributyltin ($662 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to 2,5 -di-tert-butylbenzoquinone ($220 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, following the general reaction procedure. After the usual isolation, two hydroquinones were separated by preparative layer chromatography, developing with $1: 1$ hexane-ether. The upper band contained 95 mg (36%) of 2-allyl-5-tert-butylhydroquinone, colorless cubics: mp $118-119^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 3.27\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 4.60$ and 4.67 (each s, $2 \mathrm{H}, 2 \mathrm{HO}$), $5.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right.$), 5.7-6.1 (m, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.38(\mathrm{~s}, 2 \mathrm{H}$, ring H$) ; 1 \mathrm{R}(\mathrm{KBr}) 3300(\mathrm{vs}, \mathrm{OH}), 1643$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$), 1415 (vs), 1188 (vs), 996 and $908 \mathrm{~cm}^{-1}\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, MS m/e 206 (P, 64\%), 191 (base), 163 (18\%), 150 (17%).

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The lower band contained 78 mg (35\%) of 2,5 -di-tert-butylhydroquinone.

Entry 15. (3-Methyl-2-butenyl)tributyltin ($718 \mathrm{mg}, 2 \mathrm{mmol}$) was added to $2,5-$ di-tert-butylbenzoquinone ($220 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(1 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After usual isolation, 2,5-di-tert-butylhydroquinone ($195 \mathrm{mg}, 88 \%$) was obtained.

Entry 16. Allyltributyltin (662 mg) was added to trimethylbenzoquinone ($154 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(1 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After usual isolation, two products were separated by preparative layer chromatography, developing with $1: 1$ hexane-ether. The lower band contained 72 mg (37%) of allyltrimethylhydroquinone (19), colorless needles: $\operatorname{mp} 140-142^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right) 3\right), 3.38(\mathrm{~d}, 2$ $\mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}$), 4.2 and 4.3 (each br, $2 \mathrm{H}, 2 \mathrm{HO}$), 4.8-5.0 (m, 2 $\left.\mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.7-6.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}) ; 1 \mathrm{R}(\mathrm{KBr}) 3260(\mathrm{vs}, \mathrm{OH})$, $1638(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1240(\mathrm{vs}), 1075(\mathrm{~s}), 990$ and $902 \mathrm{~cm}^{-1}(\mathrm{~s}$, $\mathrm{CH}_{2}=\mathrm{CH}$); MS m/e 192 (P, base), 177 (26\%), $162(8 \%), 149(13 \%)$, 42 (7\%).

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The upper band contained 103 mg (54%) of 5 -allyl-2,3,5-trimeth-ylcyclohex-2-ene-1,4-dione (8), a pale yellow oil: NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.23(\mathrm{q}, 1 \mathrm{H}$, diastereotopic
$\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, J=7,14 \mathrm{~Hz}$), $2.38\left(\mathrm{q}, 1 \mathrm{H}\right.$, diastereotopic $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, J$ $=7,14 \mathrm{~Hz}$), $2.57\left(\mathrm{~d}, 1 \mathrm{H}\right.$, diastereotopic ring $\left.\mathrm{CH}_{2}, J=16 \mathrm{~Hz}\right), 2.84$ (d, 1 H , diastereotopic ring $\left.\mathrm{CH}_{2}, J=16 \mathrm{~Hz}\right), 5.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, 5.4-5.9 (m, 1 H, CH=C); 1 R (neat) $2985(\mathrm{~s}), 2925(\mathrm{~s}), 1670$ (vs, $\mathrm{C}=\mathrm{O}$) , 1375 (s), 1305 (s), 1255 (s), 995 and $915 \mathrm{~cm}^{-1}(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}_{2}$).

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 17. The tin reagent $2 \mathrm{e}(718 \mathrm{mg})$ was added to trimethylbenzoquinone (154 mg) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After oxidation with an excess amount of $\mathrm{Ag}_{2} \mathrm{O}$ in ether and then isolation as in the usual method, two quinones were separated by preparative layer chromatography, developing with $85: 15$ hexane-ether. The upper band contained 142 mg (65%) of (3-methyl-2-butenyl)trimethylbenzoquinone, a yellow oil: $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.74$ (s, 3 H , trans $\left.-\mathrm{CH}_{3}\right), 1.96\left(\mathrm{~s}, 9 \mathrm{H}, 3\right.$ ring $\left.\mathrm{CH}_{3}\right), 3.12\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ 8 Hz), $4.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=8 \mathrm{~Hz}$); IR (neat) $2920(\mathrm{~s}), 1635$ (vs, $\mathrm{C}=\mathrm{O}), 1435(\mathrm{~s}), 1370(\mathrm{~s}), 1300(\mathrm{~s}), 1255 \mathrm{~cm}^{-1}$ (s).

Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The lower layer contained $46 \mathrm{mg}(30 \%)$ of trimethylbenzoquinone.

Entry 18. The tin reagent $\mathbf{2 a}(662 \mathrm{mg})$ was added to 1,4 -naphthoquinone ($158 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After oxidation with an excess amount of aqueous FeCl_{3} solution and then isolation as in the usual method, a quinone was separated by preparative layer chromatography, developing with $80: 20$ hexane-ether. Allyl-1,4naphthoquinone was obtained 83 mg (42%), yellow crystals: mp 44-45 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.28\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 5.0-5.3(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.6-6.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.66(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.5-7.7$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic H$), 7.8-8.0(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$)$; $1 \mathrm{R}(\mathrm{KBr}) 1662$ (vs, $\mathrm{C}=\mathrm{O}$), 1623 (s), 1590 (s), 1408 (s), 1330 (vs), 1296 (vs), 1240 (vs), 1140 (s), $917 \mathrm{~cm}^{-1}$ (vs).

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 19. The tin reagent $2 \mathrm{f}(280 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added to 2-methyl-1,4-naphthoquinone ($172 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.0$ mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure. After oxidation with $\mathrm{Ag}_{2} \mathrm{O}$ in ether, products were separated by preparative layer chromatography, developing with $80: 20$ hexane-ether. The upper band contained vitamin $\mathrm{K}_{2(5)}(9,189 \mathrm{mg}, 78 \%)$, a yellow oil; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right), 2.16$ (s, 3 H , ring CH_{3}), $3.28\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right.$), $5.00(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}, J=7 \mathrm{~Hz}), 7.62(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.96(\mathrm{~m}, 2 \mathrm{H}$, aromatic H); IR (neat) 2960 (s), 2910 (s), 1645 (vs, $\mathrm{C}=\mathrm{O}$), 1610 (s), 1590 (vs), 1430 (s), 1370 (s), 1325 (s), 1290 (vs), 965 (s), 780 (s), 705 cm^{-1} (vs); MS m/e 240 (P, 38\%), 225 (53\%), 212 (25\%), 199 (36\%), 175 (44\%), 154 (72%), 143 (49\%), 110 (base).

Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The lower band contained 2,3-benzo-6-methyl-6-(3-methyl-2-butenyl)cyclohexane-1,4-dione ($\mathbf{1 0}, 44 \mathrm{mg}, 18 \%$), a pale yellow oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.24\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.64$ (s, 3 H , trans $\left.-\mathrm{CH}_{3}\right), 2.20\left(\mathrm{q}, 1 \mathrm{H}\right.$, diastereotopic $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, J=8$, $14 \mathrm{~Hz}), 2.43\left(\mathrm{q}, 1 \mathrm{H}\right.$, diastereotopic $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, J=8,14 \mathrm{~Hz}\right), 2.69$ (d, 1 H , diastereotopic ring $\mathrm{CH}_{2}, J=16 \mathrm{~Hz}$), $2.94(\mathrm{~d}, 1 \mathrm{H}$, diastereotopic ring $\left.\mathrm{CH}_{2}, J=16 \mathrm{~Hz}\right), 5.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=8 \mathrm{~Hz})$, $7.66(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.98(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$) ; 1 \mathrm{R}$ (neat) 2960 (s), 2920 (s), 1680 (vs, $\mathrm{C}=\mathrm{O}$), 1590 (vs), 1290 (vs), 1250 (vs), 1210 (s), 975 (s), $750 \mathrm{~cm}^{-1}$ (s); MS m/e 242 (P, 11\%), 227 (12\%), 174 $(52 \%), 145(28 \%), 144(41 \%), 138(28 \%), 110$ (base), 97 (33\%).

Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 20. The tin reagent 2a (662 mg) was added to 2,3 -dime-thoxy-5-methylbenzoquinone ($182 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0$ mmol), following the general reaction procedure. After oxidation with aqueous FeCl_{3} solution and then isolation by preparative layer chromatography (developing twice with 80:20 hexane-ether), 2-allyl-5,6-dimethoxy-3-methylbenzoquinone ($136 \mathrm{mg}, 61 \%$) was obtained, a red oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.98\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right), 3.17(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, J=6 \mathrm{~Hz}\right), 3.95\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{O}\right), 4.88-5.13(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}_{2}$), 5.47-5.94 (m,1 H,CH=C); 1R (neat) 2945 (s), 1660 (vs, $\mathrm{C}=\mathrm{O}$) , 1615 (vs), 1454 (s), $1284(\mathrm{~m}), 1252(\mathrm{vs}), 1200(\mathrm{~s}), 1157(\mathrm{~s})$, $1095(\mathrm{~s}), 1070(\mathrm{~s}), 1003(\mathrm{~s}), 915 \mathrm{~cm}^{-1}(\mathrm{~m})$; MS m/e 222 (P, base), $207(57 \%), 179(30 \%), 151(32 \%), 123(36 \%)$.

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
Entry 21. The allyltin $2 \mathrm{e}(718 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to 2,3 -dimethoxy- 5 -methylbenzoquinone ($182 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.0 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure.

After routine isolation and then oxidation with aqueous FeCl_{3} solution, isolation by preparative layer chromatography developing twice with 80:20 hexane-ether provided coenzyme $\mathrm{Q}_{1}(11,189 \mathrm{mg}, 75 \%$), a red oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.66\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right)$, $1.96\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right), 3.09\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 3.92(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3} \mathrm{O}\right), 4.84(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=7 \mathrm{~Hz}) ; 1 \mathrm{R}$ (neat, 2930 (vs), 1650 (vs, $\mathrm{C}=\mathrm{O}$), 1617 (vs, ring $\mathrm{C}=\mathrm{C}$), 1455 (vs), 1329 (s), 1262 (vs), 1155 (vs), 1102 (s), 1013 (s), 938 (m), $836 \mathrm{~cm}^{-1}(\mathrm{~m}) ;$ MS m/e 250 (P, 11%), 235 (base), 207 (9\%), 203 (11\%), 120 (21%), 118 (63%), 116 (68\%).

Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
Entry 22. The allyltin 2a (662 mg) was added to 2,6-dimethoxybenzoquinone ($168 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After evaporation of ethereal extract in vacuo, residual precipitate was recrystallized from hexane-ether to give 1-allylcyclohexa-2,5-dien-4-oxo-1-ol (12, $111 \mathrm{mg}, 52 \%$), colorless needles: $\mathrm{mp} 107-108^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.74\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 3.72\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{O}\right)$, $4.8-5.0\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.1-5.3(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 5.36(\mathrm{~s}, 2 \mathrm{H}$, ring H); $\mathrm{IR}(\mathrm{KBr}) 3200(\mathrm{~s}, \mathrm{OH}), 1660$ (vs, $\mathrm{C}=\mathrm{O}$), 1597 (vs), 1375 (vs), 1237 (vs), $1210(\mathrm{vs}), 1150(\mathrm{~s}), 1045(\mathrm{~s}), 1005$ and $915 \mathrm{~cm}^{-1}(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}_{2}$); MS m/e $210(\mathrm{P}, 34 \%), 172$ (22\%), 168 (base), 153 (26\%).

Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
Entry 23. The allyltin 2a (662 mg) was added to 2-methoxy-1,4naphthoquinone ($188 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After evaporation of the ethereal extract in vacuo, precipitated material was recrystallized from hexane-ether to give 1-allyl-2,3-benzo-l-hy-droxy-6-methoxycyclohex-5-en-4-one (13, $205 \mathrm{mg}, 88 \%$), white crystals: $\mathrm{mp} 144-145^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.74$ (br, l H,OH), 2.74 (d, 1 H , diastereotopic $\mathrm{CH}_{2}, J=8 \mathrm{~Hz}$), $2.78(\mathrm{~d}, 1 \mathrm{H}$, diastereotopic $\left.\mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.7-4.9\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, 4.9-5.2 (m, 1 H, CH=C), $5.64(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.2-7.8(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 8.00(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$) ; 1 \mathrm{R}(\mathrm{KBr}) 3290(\mathrm{vs}, \mathrm{OH})$, 1638 (vs, $\mathrm{C}=\mathrm{O}$), 1597 (vs, ring), 1360 (vs), 1230 (vs), 1015 (vs), 996 and $926 \mathrm{~cm}^{-1}\left(\mathrm{~s}, \mathrm{CH}=\mathrm{CH}_{2}\right) ;$ MS m/e $230(\mathrm{P}, 3 \%), 224(4 \%), 188$ (base), $167(10 \%), 129(6 \%), 105(7 \%)$.

Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
Entry 24. The tin reagent $\mathbf{2 b}(690 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to 1,5-dichloro-9, 10 -anthraquinone ($227 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.0 mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$, following the general reaction procedure. After evaporation of ethereal extract in vacuo, precipitated crystals were recrystallized from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 1,5-dichloro-9-(2-methyl-2-propenyl)-9-hydroxy-10-oxoanthracene ($14,263 \mathrm{mg}, 100 \%$), pale yellow needles; mp $132-133^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~d}, 1 \mathrm{H}\right.$, diastereotopic $\mathrm{CH}_{2}, J=$ $12 \mathrm{~Hz}), 3.22\left(\mathrm{~d}, 1 \mathrm{H}\right.$, diastereotopic $\left.\mathrm{CH}_{2}, J=12 \mathrm{~Hz}\right), 3.84(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}$ and OH$), 4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 7.3-8.2(\mathrm{~m}, 6 \mathrm{H}$, aromatic H) ; IR (KBr) 3300 (vs, OH), 1658 (vs, $\mathrm{C}=\mathrm{O}$), 1585 (vs), 1430 (vs), 1139 (vs), $897 \mathrm{~cm}^{-1}\left(\mathrm{~m}, \mathrm{C}=\mathrm{CH}_{2}\right.$); MS m/e 279 (64%), 277 (base). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}$.

Entry 25. The allyltin $\mathbf{2 a}(331 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added to $9,10-$ phenanthrenequinone ($104 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, followed the general procedure. After evaporation of ethereal extract in vacuo, residual precipitate was recrystallized from hexane-ether to give 9 -allyl-9-hydroxy-10-oxaphenanthrene ($15,108 \mathrm{mg}, 86 \%$), pale yellow crystals: $\mathrm{mp} 44-46^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.6-5.0(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.3-5.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 7.1-7.9(\mathrm{~m}, 8 \mathrm{H}$, aromatic H); IR (neat) $3450(\mathrm{~s}, \mathrm{OH}), 3040(\mathrm{~m}), 2890(\mathrm{~m}), 1692$ (vs, $\mathrm{C}=\mathrm{O}$), 1642 (vs), 1603 (m), 1482 (vs), 1285 (s), 1235 (s), 1205 (s), 1023 (s), $924 \mathrm{~cm}^{-1}$ (vs).

Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Entry 26. The allyltin 2a (662 mg) was added to acenaphthenequinone ($182 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, following the general reaction procedure. After evaporation of the ethereal extract in vacuo, residual precipitate was recrystallized from hexane-ether to give pure 1-allyl-1-hydroxy-2-oxacenaphthene ($16,206 \mathrm{mg}, 91 \%$), colorless needles: $\mathrm{mp} 147-148^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.0(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 5.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, 5.4-5.9 (m, 1 H, CH=C), 7.6-8.2 (m,6 H, aromatic H); IR (KBr) 3350 (vs, OH), 2855 (s), 1705 (vs, $\mathrm{C}=\mathrm{O}$), 1608 (s), 1496 (s), 1345 (s), 1246 (vs), 1185 (vs), 1055 (s), 1020 (s), 995 and 914 (s, $\mathrm{CH}=\mathrm{CH}_{2}$), $776 \mathrm{~cm}^{-1}$ (s); MS m/e 224 (P, 8\%), 182 (base), 155 (5%), 154 (5\%).

Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
Quinol from the Reaction of Allyltributyltin with Trimethylbenzoquinone (Reaction 2, Table IV). 2a. To the dichloromethane solution (10 mL) of trimethylbenzoquinone ($15,1.0 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(5.0$ mmol) was added under N_{2} at $-90^{\circ} \mathrm{C}$, followed by quick addition of $2 \mathrm{a}(662 \mathrm{mg}, 2.0 \mathrm{mmol})$. The temperature of the reaction mixture was maintained below $-85^{\circ} \mathrm{C}$. After 3 min , the reaction mixture was quenched by the addition of aqueous saturated NaCl solution, followed by partitioning with ether. The ethereal solution was worked up in the usual manner and evaporated in vacuo. NMR analysis of the reaction mixture revealed four products: $6(23 \%)$, allyltrimethylhydroquinone ($18,8 \%$), 1-allyl-1-hydroxy-2,3,6-trimethylcyclohexa-2,4-dien-4-one (16, 53\%), and 1-allyl-l-hydroxy-2,3,5-trimethylcyclohexa-2,4-dien-4-one ($\mathbf{1 7 , 7 \%}$). The products were isolated by preparative layer chromatography, developing twice with CHCl_{3}. The $R_{f} 0.75$ band contained $6(80 \mathrm{mg}, 42 \%)$. The $R_{f} 0.35$ band contained $18(42 \mathrm{mg}$, 22%). The $R_{f} 0.25$ band contained quinol $16(44 \mathrm{mg}, 23 \%)$, a colorless oil: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.51$ (d, $\left.2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 3.4(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.8-5.3(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}), 5.92(\mathrm{q}, 1 \mathrm{H}$, ring $\mathrm{H}, J=1 \mathrm{~Hz}) ; 1 \mathrm{R}\left(\mathrm{CCl}_{4}\right) 3400(\mathrm{~s}, \mathrm{OH})$, 2930 (s), 1665 (vs, $\mathrm{C}=\mathrm{O}$), 1620 (vs), 1490 (s), 1480 (s), 1445 (s), 1330 (s), 1045 (s), 1020 (s), 990 (s), 920 (s), 910 (s), $880 \mathrm{~cm}^{-1}$ (s); MS m/e 192 (P, 40\%), 152 (base), 121 (40%), 119 (67%), 117 (66\%).

The $R_{f} 0.15$ band contained quinol $17(9 \mathrm{mg}, 5 \%)$, a colorless oil: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.83\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}, J=7 \mathrm{~Hz}\right), 4.8-5.5(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.5(\mathrm{q}, 1 \mathrm{H}$, ring $\mathrm{H}, J=1 \mathrm{~Hz}) ; 1 \mathrm{R}\left(\mathrm{CCl}_{4}\right) 3440(\mathrm{~s}, \mathrm{OH}), 2920(\mathrm{~s}), 1670(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 1615 (vs), 1440 (s), 1380 (vs), 1025 (s), 990 and 915 (s, $\mathrm{CH}=\mathrm{CH}$), $905 \mathrm{~cm}^{-1}(\mathrm{~s}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 192$ (P, 3\%), 153 (18\%), 152 (base).

2b. The reaction was performed according to the same procedure as for 2 a , and after stirring for 5 min at -90 to $-85^{\circ} \mathrm{C}$ the reaction mixture was quenched. NMR analysis of this reaction mixture revealed four products: $6(41 \%), 16(41 \%), 17(7 \%)$, and $8(10 \%)$.

2c. The reaction was performed according to the same procedure as for 2 a . After stirring for 20 min at -90 to $-85^{\circ} \mathrm{C}$, the reaction mixture was quenched. NMR analysis of this reaction mixture revealed four products: $6(41 \%), 16(41 \%), 17(6 \%)$, and $18(10 \%)$.

2d. The reaction was performed according to the same procedure as for 2 a . After keeping at -90 to $-85^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was allowed slowly to warm to $-10^{\circ} \mathrm{C}$ for 1 h and worked up in the usual manner. NMR analysis of this reaction mixture revealed four products: $6(55 \%), 16(23 \%), 18(17 \%)$, and $19(5 \%)$.

Rearrangement of Pure Quinols (Table V). Rearrangement products were identified by comparison of their NMR spectra with those of authentic materials.
A. Thermal Rearrangement of $\mathbf{1 6}$. Quinol $\mathbf{1 6}(35 \mathrm{mg}, 0.175 \mathrm{mmol})$ was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was refluxed for 8 h and evaporated under reduced pressure. NMR analysis indicated the presence of $18(80 \%)$ and $19(5 \%)$.
B. Protic Acid Catalyzed Rearrangement of 16. Quinol $16(38.6 \mathrm{mg}$. 0.196 mmol) was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.5 mL of 2 N HCl was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . NMR analysis indicated the presence of $\mathbf{6 (1 1 \%)}, \mathbf{1 8}(33 \%)$, and $\mathbf{1 6}(55 \%)$. The reaction was continued for an additional 4 h . NMR analysis showed the presence of $6(34 \%)$ and $18(60 \%)$.
C. BF_{3}-Catalyzed Rearrangement of $\mathbf{1 6}$. Quinol $\mathbf{1 6}$ ($23 \mathrm{mg}, 0.120$ mmol) was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.21 \mathrm{mmol})$ was added at $-70^{\circ} \mathrm{C}$. Then the reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ under constant stirring, saturated aqueous NaCl was added, and the mixture was partitioned with eher. After evaporation of organic solvent, NMR analysis indicated $6(45 \%)$ and 18 (55%).
D. Thermal Rearrangement of 17 . Quinol $17(15 \mathrm{mg}, 0.078 \mathrm{mmol})$ was refluxed in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 h . After evaporation of the solvent, NMR analysis showed the sole product to be 6 (100%).
E. Protic Acid Catalyzed Rearrangement of 17 . Quinol 17 (15 mg , $0.078 \mathrm{mmol})$ was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $2 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$ was added at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$. After the usual workup, NMR analysis indicated the major product to be $6(90 \%)$, accompanied by a trace amount of 18.
F. BF 3 -Catalyzed Rearrangement of $\mathbf{1 7}$. Quinol 17 ($6.1 \mathrm{mg}, 0.032$ mmol) was dissolved in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(0.04 \mathrm{mmol})$ was added at $-73^{\circ} \mathrm{C}$. After the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$, the usual workup gave $6(47 \%), 18(44 \%)$, and $7(9 \%)$ by NMR.

Reaction of Allyltributyltin with Trimethylbenzoquinone. Effects
of the Added Amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Table IV). All the reactions were performed in $1-\mathrm{mmol}$ scale under the standard conditions.
A. The reaction was performed in the presence of 1 equiv (based on the a mount of the quinone) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. NMR analysis indicated the presence of two compounds: $6(54 \%)$ and $8(30 \%)$
B. The reaction was performed in the presence of 2 equiv of BF_{3}. OEt_{2}. NMR analysis indicated the presence of two compounds: 6 (55\%) and $8(41 \%)$.
C. The reaction was performed in the presence of 3 equiv of BF_{3}. OEt_{2}. NMR analysis indicated the presence of two products: $\mathbf{6}(38 \%)$ and 18 (61\%).
D. The reaction was performed in the presence of 3 equiv of BF_{3}. OEt_{2}. NMR analysis indicated the presence of two products: $6(21 \%)$ and 18 (79\%).

Reaction of (2-Methyl-2-propenyl)tributyltin with 2,5-Dimethylbenzoquinone (Reaction $\mathbf{3 c}$). The tin reagent $\mathbf{2 b}$ ($690 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (10 mL) of 2,5 -dimethylbenzoquinone $(136 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$; then the reaction mixture was allowed to gradually warm up to room temperature. An amount (10 mL) of aqueous saturated NaCl solution was added to the reaction mixture, following the usual workup. NMR analysis indicated the presence of two products: 5 (45\%) and 22 (43\%)

Reaction of (2-Methyl-2-propenyl)tributyltin with 2,5-Dimethylbenzoquinone (Reaction 3d). The reaction was performed according to the above method using 1.0 mmol of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. NMR analysis indicated the presence of 22 (99.5%). TLC analysis indicated the presence of a trace amount of 5 .

Reaction of 2-Butenyltributyltin with 2-Methoxy-1,4-naphthoquinone. The tin reagent $2 \mathrm{c}(690 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2-methoxy-1,4-naphthoquinone (23) and $\mathrm{BF}_{3} \cdot$ $\mathrm{OEt}_{2}(2.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ and then quenched with aqueous saturated NaCl solution, following the usual workup. After concentration, the products were separated by preparative layer chromatography, developing twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $R_{f} 0.54$ band contained $40 \mathrm{mg}(21 \%)$ of the starting quinone. The $R_{f} 0.46-0.15$ band contained three quinols (in a total yield of $138 \mathrm{mg}, 57 \%$). The quinol mixture was separated by me-dium-pressure liquid chromatography (silica gel column, developing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The first fraction contained 40 mg (17%) of one diastereomer of 2,3-benzo-1-hydroxy-1-(1-methyl-2-propenyl)-5-methoxycyclohexa-2,5-dien-4-one (24), colorless crystals (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane): $\mathrm{mp} 104-105^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{~d}, 3 \mathrm{H}$, $J=7 \mathrm{~Hz}), 2.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.39(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 5.05-5.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.43-5.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C})$, $5.78(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.3-7.8(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 8.10(\mathrm{~m}, 1 \mathrm{H}$, aromatic H); IR (KBr) 3370 (vs, OH), 3090 (m), 2980 (m), 1620 (vs, $\mathrm{C}=\mathrm{O}$), 1590 (vs), 1567 (vs), 1450 (s), 1360 (vs), 1230 (vs), 1205 (s), 1190 (vs), 1010 (vs), 993 (s), 953 (vs), 842 (vs), 913 (vs), $785 \mathrm{~cm}^{-1}$ (vs).

Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
The second fraction contained $17 \mathrm{mg}(7 \%)$ of another diastereomer (25), colorless rhombics (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane): mp $149-150^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.81\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 2.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $3.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.52-4.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right)$, $5.24-5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 5.80(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.00-7.48(\mathrm{~m}, 3$ H , aromatic H), 7.82 (d, 1 H , aromatic H).

Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$
The third fraction contained a mixture ($21 \mathrm{mg}, 9 \%$) of two stereoisomers (trans:cis $=80: 20$) of 2,3-benzo-1-(2-butenyl)-1-hydroxy-6-methoxycyclohexa-2.5-dien-4-one (26), colorless rhombics: mp $137-139^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left(\mathrm{~d}\right.$, trans $\left.-\mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 1.46$ (d , cis $-\mathrm{CH}_{3}, J=7 \mathrm{~Hz}$), $2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42(\mathrm{br}, \mathrm{OH}), 3.80(\mathrm{~s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.73\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.37\left(\mathrm{~m}, \mathrm{C}=\mathrm{CHCH}_{3}\right), 5.62$ (s, ring H), 7.28-7.80 (m, 3 H , aromatic H), 7.99 (d, aromatic H$) ;$ IR (KBr) 3380 (vs, OH), 1630 (vs, $\mathrm{C}=\mathrm{O}$), 1610 (vs), 1595 (vs), 1570 (vs), 1460 (s), 1364 (s), 1340 (s), 1245 (vs), 1230 (vs), 1020 (vs), 965 (s), 864 (s). 784 (vs), $735 \mathrm{~cm}^{-1}$ (s).

Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
Reaction of (3-Methyl-2-butenyl)tributyltin with 2-Methoxy-1,4-naphthoquinone. The tin reagent $2 \mathrm{e}(718 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 mL) of 2 -methoxy-1,4-naphthoquinone ($\mathbf{2 3}$, $188 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $-50^{\circ} \mathrm{C}$ and then quenched with aqueous saturated NaCl solution, following the usual workup. The products were separated by preparative layer chromatography, de-
veloping with CHCl_{3}. The $R_{f} 0.82$ band contained 32 mg (10%) of 2-(3-methyl-2-butenyl)-3-methoxy-1,4-naphthoquinone (28), a yellow oil: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.69\left(\mathrm{~s}, 3 \mathrm{H}\right.$, cis $\left.-\mathrm{CH}_{3}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}\right.$, trans $\left.-\mathrm{CH}_{3}\right)$, $3.33\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right), 4.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 5.19(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{C}, J=8 \mathrm{~Hz}), 7.8-7.9(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 8.0-8.2(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$) ; \mathrm{lR}\left(\mathrm{CCl}_{4}\right) 2920(\mathrm{~m}), 1670(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1650(\mathrm{~s}), 1595$ (s), 1336 (vs), 1262 (vs), 1240 (s), 1217 (s), 1063 (s), $915 \mathrm{~cm}^{-1}$ (s); MS m/e 256 (P, base), 241 (80%), 213 (98%).

Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
The $R_{f} 0.33$ band contained $38 \mathrm{mg}(20 \%)$ of the starting quinone. The $R_{f} 0.08$ band contained 20 mg (7%) of 2,3 -benzo-l-hydroxy-(3-methyl-2-butenyl)-6-methoxycyclohexa-2,4-dien-4-one (27), colorless crystals: mp 131-132 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=8 \mathrm{~Hz}\right), 3.0(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}, J=8 \mathrm{~Hz}), 5.65(\mathrm{~s}$, 1 H , ring H$), 7.2-7.8(\mathrm{~m}, 3 \mathrm{H}$, ring H$), 8.00(\mathrm{~m}, 1 \mathrm{H}$, ring H$)$; 1 R (KBr) 3370 (vs, OH), 2910 (m), 1620 (vs, $\mathrm{C}=\mathrm{O}$), 1600 (vs), 1590 (vs), 1565 (vs), 1450 (s), 1360 (vs), 1230 (vs), 1195 (s), 1060 (s), 1045 (s), 1010 (s), $860(\mathrm{~s}), 780 \mathrm{~cm}^{-1}(\mathrm{~s}) ;$ MS m/e 258.126 ± 0.005 (calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}, 258.1255$).

Reaction of trans-2-Butenyltrialkyltin with Quinones. A. With pBenzoquinone. trans-2-Butenyltributyltin ($\mathbf{2 c}, 690 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to p-benzoquinone (108 mg) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure. After oxidation with aqueous FeCl_{3} solution, the NMR spectrum of this product showed it to be composed of two types of allylic isomers, 2 -butenylbenzoquinone (α adduct, 5\%) and (1-methyl-2-propenyl)benzoquinone (γ adduct, 95%). The products were isolated by preparative layer chromatography, developing with $85: 15$ hexane-ether. The isomeric mixture was obtained ($121 \mathrm{mg}, 75 \%$), a brown oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.16$ (d, CH_{3} of γ adduct, $J=7 \mathrm{~Hz}$), $1.72\left(\mathrm{~d}, \mathrm{CH}_{3}\right.$ of α adduct, $J=6 \mathrm{~Hz}$), $3.08\left(\mathrm{~d}, \mathrm{CH}_{2}\right.$ of α adduct, $J=7 \mathrm{~Hz}$), $3.63(\mathrm{~m}, \mathrm{CH}$ of γ adduct $), 5.12$ (d, $\mathrm{CH}=\mathrm{CH}_{2}$ of γ adduct, $J=12 \mathrm{~Hz}$), $5.14\left(\mathrm{~d}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of γ adduct, $J=16 \mathrm{~Hz}), 5.50(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}$ of α adduct $), 5.8-6.0(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}_{2}$ of γ adduct), 6.50 (s, ring H), 6.74 (s, ring H); 1R (neat) 2960 (s), 1660 (vs, $\mathrm{C}=\mathrm{O}$), 1600 (vs), 1455 (s), 1354 (s), 1300 (vs), 1013 and $910\left(\mathrm{vs}, \mathrm{CH}=\mathrm{CH}_{2}\right), 828 \mathrm{~cm}^{-1}$ (s); MS m/e $162(\mathrm{P}, 62 \%)$, 147 (base), 134 (62%), 119 (65%), 105 (33%), 91 (69%).

Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
B. With 2,3-Dimethylbenzoquinone. trans-2-Butenyltrimethyltin (2d, $525 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added to 2,3-dimethylbenzoquinone (272 $\mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After evaporation of the organic solvent, in the residue no α adduct was detected by NMR. Two products were isolated by preparative layer chromatography, developing with 85:15 hexane-ether. The upper band contained the starting quinone ($81 \mathrm{mg}, 30 \%$). The lower band contained 2,3 -dimethyl- 5 -(3-methyl-2-propenyl) hydroquinone ($158 \mathrm{mg}, 41 \%$), colorless crystals: mp 74-76 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=8 \mathrm{~Hz}\right), 2.16$ ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 4.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 5.0-5.3\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.8-6.2(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.42$ (s, 1 H , aromatic H); $\mathrm{IR}(\mathrm{KBr}) 3260(\mathrm{vs}, \mathrm{OH}), 1630(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1590$ (m), 1410 (vs), 1210 (vs), 1075 (vs), 990 and 910 (s, $\mathrm{CH}=\mathrm{CH}_{2}$), 865 (m), $815 \mathrm{~cm}^{-1}(\mathrm{~m})$

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
C. With 2,3-Dichlorobenzoquinone. The tin reagent 2d (262 mg , 1.2 mmol) was added to 2,3-dichlorobenzoquinone ($177 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general reaction procedure. After evaporation of organic solvent in vacuo, NMR analysis of the residue showed it to be two types of allylic isomers, 5-(2-butenyl)-2,3-dichlorohydroquinone (α adduct, 37\%) and 2,3-dichloro-5-(1-methyl-2-propenyl) hydroquinone (γ adduct, 63%). This isomeric mixture ($205 \mathrm{mg}, 88 \%$) was recrystallized from hexane-ether as white needles: $\mathrm{mp} 92-95^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31$ (d, CH_{3} of γ adduct, $J=8 \mathrm{~Hz}$), $1.68\left(\mathrm{~m}\right.$, cis - and trans $-\mathrm{CH}_{3}$ of α adduct), 3.31 ($\mathrm{m}, \mathrm{CH}_{2}$ of α adduct), 3.84 (m, CH of γ adduct), 5.02 and $5.15\left(\mathrm{~m}, \mathrm{CH}=\mathrm{C} \mathrm{H}_{2}\right.$ of γ adduct $), 5.3(\mathrm{br}, \mathrm{OH}), 5.55(\mathrm{~m}$, $\mathrm{CH}=\mathrm{CH}$ of α adduct $), 5.8-6.2\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ of γ adduct $), 6.82(\mathrm{~s}$, aromatic H); $1 \mathrm{R}(\mathrm{KBr}) 3320(\mathrm{vs}, \mathrm{OH}), 1490(\mathrm{~s}), 1420$ (vs), 1400 (vs), 1340 (s), 1300 (s), 1270 (s), 1170 (vs), 1140 (vs), 965 (vs, trans$\mathrm{CH}=\mathrm{CH}$), $850 \mathrm{~cm}^{-1}$ (vs).

Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}$.
D. With 1,4 -Naphthoquinone. The tin reagent 2 d ($549 \mathrm{mg}, 2.5$ mmol) was added to 1,4 -naphthoquinone ($316 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.0 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the usual reaction procedure. After oxidation with $\mathrm{Ag}_{2} \mathrm{O}$ and then evaporation
of the solvent, in the residue no α adduct was detected by NMR. The product was isolated by preparative layer chromatography, developing with $85: 15$ hexane-ether. The product was isolated and assigned to be 2-(1-methyl-2-propenyl)-1,4-naphthoquinone ($364 \mathrm{mg}, 98 \%$), a yellow oil: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=8 \mathrm{~Hz}\right), 3.85(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}, J=6,8 \mathrm{~Hz}), 5.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.7-6.1(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.76(\mathrm{~s}, 1 \mathrm{H}$, ring H$), 7.6-7.8(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$)$, 7.9-8.1 (m, 2 H , aromatic H); IR (neat) 2970 (s), 1655 (vs, $\mathrm{C}=\mathrm{O}$), $1590(\mathrm{~s}), 1325$ (vs), 1300 (vs), $1240(\mathrm{~s}), 990$ and $915\left(\mathrm{~s}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $770 \mathrm{~cm}^{-1}$ (s); MS m/e 212 (P, 81\%), 197 (base).

Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
E. With 2,5-Dimethylbenzoquinone. The tin reagent 2c (864 mg , 2.5 mmol) was added to 2,5 -dimethylbenzoquinone ($272 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure. After evaporation of the solvent, recrystallization of the residue from CHCl_{3} gave 3 -(2-butenyl)-2,5-dimethylhydroquinone ($227 \mathrm{mg}, 69 \%$), white needles: $\mathrm{mp} 153.0-154.5^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.71\left(\mathrm{~m}, 3 \mathrm{H}\right.$, cis- and trans $\left.-\mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 6 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right)$, $3.40\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.6(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), 5.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.51$ (s, 1 H , aromatic H); IR (KBr) 3300 (vs, OH), 2920 (s), 1627 (w, $\mathrm{C}=\mathrm{C}$), 1450 (s), 1385 (s), 1354 (vs), 1220 (vs), 1190 (vs), 1106 (s), 1081 (s), 972 (s), $955 \mathrm{~cm}^{-1}$ (s, trans $-\mathrm{CH}=\mathrm{CH}$); MS m/e 192 (P, base), 177 (71%), 175 (18%), 163 (16%), 150 (24%).

After oxidation of the hydroquinone with $\mathrm{Ag}_{2} \mathrm{O}$, the product was separated by preparative layer chromatography, developing with $85: 15$ hexane-ether. The $R_{f} 0.51$ band contained 3-(2-butenyl)-2,5-dimethylbenzoquinone. The NMR spectrum of this quinone showed it to be composed predominantly of a trans isomer of the side chain (trans:cis >98:2), and not to contain a regioisomer ($<1 \%$): NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.65\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=5 \mathrm{~Hz}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right), 2.03$ (d, 3 H , ring $\mathrm{CH}_{3}, J=1.5 \mathrm{~Hz}$), $3.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=6 \mathrm{~Hz}\right), 5.40$ (m, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), $6.54(\mathrm{q}, 1 \mathrm{H}$, ring $\mathrm{H}, J=1.5 \mathrm{~Hz}$); IR (neat) 2930 (m), 1653 (vs, $\mathrm{C}=\mathrm{O}), 1618(\mathrm{~s}), 1440(\mathrm{~m}), 1380(\mathrm{~m}), 1318(\mathrm{~s}), 1260$ (m), $1187(\mathrm{~m}), 962(\mathrm{~s}), 883 \mathrm{~cm}^{-1}(\mathrm{~m}) ;$ MS m/e 190 (P, 54\%), 175 (base), 162 (22%), 147 (45%).

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
F. With 2,6-Dimethylbenzoquinone. The tin reagent $\mathbf{2 c}(1.03 \mathrm{~g}, 3.0$ mmol) was added to 2,6-dimethylbenzoquinone ($272 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure. After oxidation with $\mathrm{Ag}_{2} \mathrm{O}$, the products were separated by preparative layer chromatography. developing twice with $95: 5$ hexane-ether. The upper band contained 44 mg (9%) of 2,6-di(2-butenyl)-3,5-dimethylbenzoquinone, a yellow oil: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.62$ (d, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}, J=5 \mathrm{~Hz}_{2}\right), 1.97\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.10\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=5 \mathrm{~Hz}), 5.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) ; 1 \mathrm{R}$ (neat) $2925(\mathrm{~m}), 1645(\mathrm{vs}$, $\mathrm{C}=\mathrm{O}$), 1438 (m), 1290 (s$), 1252(\mathrm{~m}), 1204(\mathrm{~m}), 964 \mathrm{~cm}^{-1}$ (s, trans $-\mathrm{CH}=\mathrm{CH}$); MS m/e 244 (P, 98\%), 229 (base), 215 (24\%), 201 (19\%), $189(30 \%), 174(28 \%), 159(48 \%)$.

Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The middle band contained 95 mg (25%) of 2 -(2-butenyl)-3,5dimethylbenzoquinone, a yellow oil. The NMR spectrum showed it to be composed predominantly of the trans isomer of the side chain (trans:cis 96:4) and not to contain the regioisomer: NMR $\left(\mathrm{CCl}_{4}\right) \delta$ $1.60\left(\mathrm{~d}\right.$, trans $\left.-\mathrm{CH}_{3}, J=5 \mathrm{~Hz}\right), 1.72\left(\mathrm{~d}\right.$, cis $\left.-\mathrm{CH}_{3}, J=6 \mathrm{~Hz}\right), 1.99(\mathrm{~s}$, $\left.2 \mathrm{CH}_{3}\right), 3.08\left(\mathrm{~d}\right.$, trans $\left.-\mathrm{CH}_{2}, J=5 \mathrm{~Hz}\right), 3.17\left(\mathrm{~d}\right.$, cis $-\mathrm{CH}_{2}, J=6 \mathrm{H}_{2}$), $5.24(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}), 6.36(\mathrm{~s}$, ring H$) ; 1 \mathrm{R}$ (neat) $2930(\mathrm{~s}), 1648$ (vs, $\mathrm{C}=\mathrm{O}$) , 1617 (s) , 1380 (s), 1028 (m), 964 (s, trans $-\mathrm{CH}=\mathrm{CH}$), 885 $\mathrm{cm}^{-1}(\mathrm{~m}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 190$ (P,57\%), 175 (base), 161 (31%), 147 (53%), 119 (21\%).

Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
The lower band contained 2,6-dimethylbenzoquinone (68 mg , 25\%).
G. With 2,5-Di-tert-butylbenzoquinone. The tin reagent 2d (690 $\mathrm{mg}, 2.0 \mathrm{mmol}$) was added to $2,5-\mathrm{di}$-tert-butylbenzoquinone (220 mg , $1.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, following the general procedure. The products were isolated by preparative layer chromatography, developing with $1: 1$ hexane-ether. The upper band contained 2-(2-butenyl)-5-tert-butylhydroquinone, white needles, $\mathrm{mp} 112-113^{\circ} \mathrm{C}$. The regioisomer was not detected by NMR: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.22(\mathrm{br}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) 5.6(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$, 6.42 (s, 1 H, ring H), 6.76 (s, 1 H , ring H); IR (KBr) $3300(\mathrm{vs}, \mathrm{OH})$, 2965 (s), 1417 (vs), 1244 (w), 1190 (vs), 1138 (s), 968 (m, trans$\mathrm{CH}=\mathrm{CH}), 870 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 220(\mathrm{P}, 37 \%), 214(24 \%), 205$ (53\%), 203 (42%), 175 (32\%), 164 (base), 148 (58%).

Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}\right) \mathrm{C} . \mathrm{H}$.
The lower layer contained 2,5-di-tert-butylhydroquinone (164 mg , 56%).

The above allylated hydroquinone easily underwent air oxidation to give the corresponding quinone, of which the stereochemistry of the side chain was determined to be trans:cis $\simeq 70: 30$ by NMR: NMR $\left(\mathrm{CDCl}_{4}\right) \delta 1.30\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.68\left(\mathrm{~d}\right.$, cis $\left.-\mathrm{CH}_{3}, J=4 \mathrm{~Hz}\right), 1.74(\mathrm{~d}$, trans $\left.-\mathrm{CH}_{3}, J=4 \mathrm{~Hz}\right), 3.06\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.60(\mathrm{~m}, \mathrm{CH}=\mathrm{CH}), 6.38(\mathrm{t}$, ring $H, J=1 \mathrm{~Hz}$), 6.49 (s, ring H); 1R (neat) 2960 (vs), 1645 (vs, $\mathrm{C}=\mathrm{O}$) , 1595 (s), 1365 (s), 1250 (s), 1100 (s), 970 (s), $910 \mathrm{~cm}^{-1}$; MS $m / e 218$ ($\mathrm{P}, 60 \%$), 203 (base), 175 (85%), 162 (36%), 161 (33\%), 147 (32\%).

$$
\text { Anal. }\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}\right), \mathrm{C}, \mathrm{H}
$$

Acknowledgment. The author is grateful to Professor K. Maruyama for valuable discussions and his continuous encouragement. This research was supported by a grant-in-aid for scientific research from the Ministry of Education (1978-1979).

References and Notes

(1) Synthesis of Naturally Occurring Quinones. 7. A part of this work has been published in a preliminary form (ref 12). Part 6: Naruta, Y.; Maruyama, K. Chem. Lett. 1979, 885.
(2) For a review: Pereyre, M.; Pommer, J.-C. "New Application of Organometallic Reagents in Organic Synthesis", Seyferth, D. Ed.; Elsevier: Amsterdam, 1976; pp 161-218.
(3) (a) Schweig, A.; Weinder, U.; Manuel, G. J. Organomet. Chem. 1967, 54, 145. (b) Schweig, A.; Weinder, U. Ibid. 1967, 67, C4. (c) Hanstein, H.; Berwein, H. J.; Trayer, T. G. J. Am. Chem. Soc. 1970, 92, 7470.
(4) (a) Maruyama, K.; Naruta, Y. Chem. Lett. 1978, 431. (b) Naruta, Y.; Ushida, S.; Maruyama, K. Ibid. 1979, 919. (c) Hosomi, A.; Iguchi, H.; Endo, M.; Sakurai, H. Ibid. 1979, 977.
(5) For exceilent reviews of quinones and their chemistry see: (a) Morton, R. A., Ed. "Biochemistry of Quinones", Academic Press: New York, 1965. (b) Thomson, R. H. "Naturally Occurring Quinones", 2nd ed.; Academic Press: New York, 1971. (c) Patai, S., Ed. "The Chemistry of the Quinonoid Compounds', Parts 1 and 2; Wiley: New York, 1974.
(6) Fieser, L. F. J. Am. Chem. Soc. 1939, 61, 2559.
(7) (a) Tishler, M.; Fieser, L. F.; Wender, N. J. J. Am. Chem. Soc. 1940, 62, 1982. (b) Klose, A. A.; Almquist, H. J. J. Biol. Chem. 1940, B2, 462. (c) Hirschmann, R.; Miller, R.; Wendler, N. L. J. Am. Chem. Soc. 1954, 76, 4592. (d) Isler, O.; Doebel, K. Helv. Chim. Acta 1954, 37, 225.
(8) Stevens, K. L.; Jurd, L.; Manners, G. Tetrahedron 72, 28, 1939.
(9) (a) Hegedus, L. S.; Waterman, E. L.; Catlin, J. J. Am. Chem. Soc. 1972, 94, 7155. (b) Hegedus, L. S.; Evans, B. R. Ibid. 1978, 100, 3461.
(10) (a) Sato, K.; Inoue, S.: Yamaguchi, R. J. Org. Chem. 1972. 37, 1889. (b) Sato, K.; Inoue, S.; Saito, K. J. Chem. Soc., Perkin Trans. 1 1973, 2289. (c) Inoue, S.; Yamagami, R.; Sato, K. Bull. Chem. Soc. Jpn. 1974, 47, 3098, (d) Snyder, C. D.; Rapoport, R. J. Am. Chem. Soc. 1974, 96, 8046. (e) Evans, D. A.; Hoffman, J. M. lbid. 1976, 98, 1983. (f) Raynolds, R. W.; Manning, M. J.; Swenton, J. S. J. Chem. Soc., Chem. Commun. 1977, 499.
(11) Jacobsen, N.; Torssell, K. Acta Chem. Scand. 1973, 27, 3211.
(12) (a) Maruyama, K.; Naruta, Y. J. Org. Chem. 1978, 43, 3796. (b) Simple allylation of quinones with allylsilane was also reported: Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1977, 4041.
(13) The strength of Lewis acid-ketone complex was reported in the order AlCl_{3} $>\mathrm{TiCl}_{4}>\mathrm{SnCl}_{4}>\mathrm{BF}_{3}$. See: Susz, B. P. Bull. Soc. Chim. Fr. 1965, 2671.
(14) The allylquinol from 2,5-dimethylbenzoquinone is capable of rearranging to allylhydroquinone via [3,3] fashion. However, it would involve eclipsing of a ring methyl group with the side-chain methyl group in the pseudochair transition state; then this pathway may be suppressed (ref 9).
(15) Miller, B. Acc. Chem. Res. 1975, 8, 245, and references cited therein.
(16) Quinols 25 and 26 are a diastereomeric pair. Their configurations were not determined.
(17) The energy difference between 3-buten-2-yl and 2-buten-1-yl cations is estimated to be $0.3 \mathrm{kcal} / \mathrm{mol}$ (at $44.6^{\circ} \mathrm{C}$) based on the hydrolysis of the corresponding chlorides: Vernon, C. A. J. Chem. Soc. 1954, 425, 4462. From the stability of these cations, formation of " γ adduct" might have been expected in every reaction.
(18) Kraus, C. A.; Sessions, W. V. J. Am. Chem. Soc. 1925, 47, 2361.
(19) Tanaka, J.; Katagiri, T.; Yamada, S. Nippon Kagaku Zasshi 1966, 87, 877; Chem. Abstr. 1966, 65, 18449 d.
(20) Rupe, H.; Bürgin, J. Chem. Ber. 1910, 43, 172.
(21) Teuber, H.-J.; Rau, W. Chem. Ber. 1953, 86, 1036.
(22) Fieser, L. F.; Campbell, W. P.; Fry, E. M. J. Am. Chem. Soc. 1939, 61, 2206.
(23) Otsuki, T. Bull. Chem. Soc. Jpn. 1974, 47, 3089.
(24) Ullmann, F.; Wenner, P. Justus Llebigs Ann. Chem. 1903, 327, 116.
(25) Matarasso-T chiroukhine, E.; Cadiot, P. J. Organomet. Chem. 1976, 121, 155.
(26) Abel, E. A.; Rowley, R. J. J. Organomet. Chem. 1975, 84, 199.
(27) Tamborski, C.; Ford, F. E.; Soloski, E. J. J. Org. Chem. 1963, $28,237$.
(28) Tanigawa, Y.; Moritani, I.; Nishida, S. J. Organomet. Chem. 1971, 28, 73.
(29) Bohlmann, F.; Kleine, K.-M. Chem. Ber. 1966, 99, 885

